dans Matlab, je fais ceci:
>> E = [];
>> A = [1 2 3 4 5; 10 20 30 40 50];
>> E = [E ; A]
E =
1 2 3 4 5
10 20 30 40 50
Maintenant, je veux la même chose dans Numpy mais j'ai des problèmes, regardez ceci:
>>> E = array([],dtype=int)
>>> E
array([], dtype=int64)
>>> A = array([[1,2,3,4,5],[10,20,30,40,50]])
>>> E = vstack((E,A))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/numpy/core/shape_base.py", line 226, in vstack
return _nx.concatenate(map(atleast_2d,tup),0)
ValueError: array dimensions must agree except for d_0
J'ai une situation similaire quand je fais cela avec:
>>> E = concatenate((E,A),axis=0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: arrays must have same number of dimensions
Ou:
>>> E = append([E],[A],axis=0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/numpy/lib/function_base.py", line 3577, in append
return concatenate((arr, values), axis=axis)
ValueError: arrays must have same number of dimensions
si vous connaissez le nombre de colonnes à l’avance:
>>> xs = np.array([[1,2,3,4,5],[10,20,30,40,50]])
>>> ys = np.array([], dtype=np.int64).reshape(0,5)
>>> ys
array([], shape=(0, 5), dtype=int64)
>>> np.vstack([ys, xs])
array([[ 1., 2., 3., 4., 5.],
[ 10., 20., 30., 40., 50.]])
si non:
>>> ys = np.array([])
>>> ys = np.vstack([ys, xs]) if ys.size else xs
array([[ 1, 2, 3, 4, 5],
[10, 20, 30, 40, 50]])
Quelque chose que j'ai construit pour traiter ce genre de problème. Il traite également de l'entrée list
au lieu de np.array
:
import numpy as np
def cat(tupleOfArrays, axis=0):
# deals with problems of concating empty arrays
# also gives better error massages
# first check that the input is correct
assert isinstance(tupleOfArrays, Tuple), 'first var should be Tuple of arrays'
firstFlag = True
res = np.array([])
# run over each element in Tuple
for i in range(len(tupleOfArrays)):
x = tupleOfArrays[i]
if len(x) > 0: # if an empty array\list - skip
if isinstance(x, list): # all should be ndarray
x = np.array(x)
if x.ndim == 1: # easier to concat 2d arrays
x = x.reshape((1, -1))
if firstFlag: # for the first non empty array, just swich the empty res array with it
res = x
firstFlag = False
else: # actual concatination
# first check that concat dims are good
if axis == 0:
assert res.shape[1] == x.shape[1], "Error concating vertically element index " + str(i) + \
" with prior elements: given mat shapes are " + \
str(res.shape) + " & " + str(x.shape)
else: # axis == 1:
assert res.shape[0] == x.shape[0], "Error concating horizontally element index " + str(i) + \
" with prior elements: given mat shapes are " + \
str(res.shape) + " & " + str(x.shape)
res = np.concatenate((res, x), axis=axis)
return res
if __== "__main__":
print(cat((np.array([]), [])))
print(cat((np.array([1, 2, 3]), np.array([]), [1, 3, 54+1j]), axis=0))
print(cat((np.array([[1, 2, 3]]).T, np.array([]), np.array([[1, 3, 54+1j]]).T), axis=1))
print(cat((np.array([[1, 2, 3]]).T, np.array([]), np.array([[3, 54]]).T), axis=1)) # a bad one