web-dev-qa-db-fra.com

Créer un calendrier de vacances de trading avec Pandas

J'essaie de créer un calendrier de trading à l'aide de Pandas. Je suis en mesure de créer une instance cal basée sur le USF FederalHolidayCalendar. Le USF FederalHolidayCalendar n'est pas cohérent avec le calendrier de trading dans la mesure où le calendrier de trading n'inclut pas le Columbus Day et le Veteran's Day. Cependant, le calendrier de négociation comprend le Vendredi saint (non inclus dans le USF FederalHolidayCalendar). Tout sauf la dernière ligne du code suivant fonctionne:

from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory, GoodFriday
from datetime import datetime

cal = get_calendar('USFederalHolidayCalendar')  # Create calendar instance
cal.rules.pop(7)                                # Remove Veteran's Day rule
cal.rules.pop(6)                                # Remove Columbus Day rule
tradingCal = HolidayCalendarFactory('TradingCalendar', cal, GoodFriday)

L'instance tradingCal semble fonctionner en ce sens que je suis en mesure d'afficher les règles de vacances.

In[10]: tradingCal.rules
Out[10]: 
[Holiday: Labor Day (month=9, day=1, offset=<DateOffset: kwds={'weekday': MO(+1)}>),
 Holiday: Presidents Day (month=2, day=1, offset=<DateOffset: kwds={'weekday': MO(+3)}>),
 Holiday: Good Friday (month=1, day=1, offset=[<Easter>, <-2 * Days>]),
 Holiday: Dr. Martin Luther King Jr. (month=1, day=1, offset=<DateOffset: kwds={'weekday': MO(+3)}>),
 Holiday: New Years Day (month=1, day=1, observance=<function nearest_workday at 0x000000000A190BA8>),
 Holiday: Thanksgiving (month=11, day=1, offset=<DateOffset: kwds={'weekday': TH(+4)}>),
 Holiday: July 4th (month=7, day=4, observance=<function nearest_workday at 0x000000000A190BA8>),
 Holiday: Christmas (month=12, day=25, observance=<function nearest_workday at 0x000000000A190BA8>),
 Holiday: MemorialDay (month=5, day=31, offset=<DateOffset: kwds={'weekday': MO(-1)}>)]

Lorsque j'essaie de répertorier les vacances dans une plage de dates, j'obtiens l'erreur suivante:

In[11]: tradingCal.holidays(datetime(2014, 12, 31), datetime(2016, 12, 31))
Traceback (most recent call last):
  File "C:\Python27\lib\site-packages\IPython\core\interactiveshell.py", line 3035, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-12-2708cd2db7a0>", line 1, in <module>
    tradingCal.holidays(datetime(2014, 12, 31), datetime(2016, 12, 31))
TypeError: unbound method holidays() must be called with TradingCalendar instance as first argument (got datetime instance instead)

Des idées?

26
vlmercado

Il est peut-être plus simple de créer le calendrier commercial à partir de zéro, comme ceci:

import datetime as dt

from pandas.tseries.holiday import AbstractHolidayCalendar, Holiday, nearest_workday, \
    USMartinLutherKingJr, USPresidentsDay, GoodFriday, USMemorialDay, \
    USLaborDay, USThanksgivingDay


class USTradingCalendar(AbstractHolidayCalendar):
    rules = [
        Holiday('NewYearsDay', month=1, day=1, observance=nearest_workday),
        USMartinLutherKingJr,
        USPresidentsDay,
        GoodFriday,
        USMemorialDay,
        Holiday('USIndependenceDay', month=7, day=4, observance=nearest_workday),
        USLaborDay,
        USThanksgivingDay,
        Holiday('Christmas', month=12, day=25, observance=nearest_workday)
    ]


def get_trading_close_holidays(year):
    inst = USTradingCalendar()

    return inst.holidays(dt.datetime(year-1, 12, 31), dt.datetime(year, 12, 31))


if __name__ == '__main__':
    print(get_trading_close_holidays(2016))
    #    DatetimeIndex(['2016-01-01', '2016-01-18', '2016-02-15', '2016-03-25',
    #                   '2016-05-30', '2016-07-04', '2016-09-05', '2016-11-24',
    #                   '2016-12-26'],
    #                  dtype='datetime64[ns]', freq=None)
36
Pierre Boutquin

Si cela peut aider, j'avais un besoin similaire de calendriers de trading d'échange. Il y avait un excellent code enfoui dans le projet Zipline par Quantopian. J'ai extrait la partie pertinente et créé un nouveau projet pour créer des calendriers d'échange de marché dans les pandas. Les liens sont ici, avec certaines des fonctionnalités décrites ci-dessous.

https://github.com/rsheftel/pandas_market_calendars

https://pypi.python.org/pypi/pandas-market-calendars

Voici ce qu'il peut faire en créant un pandas DatetimeIndex de toutes les heures d'ouverture valides pour le NYSE:

import pandas_market_calendars as mcal
nyse = mcal.get_calendar('NYSE')

early = nyse.schedule(start_date='2012-07-01', end_date='2012-07-10')
early

                  market_open             market_close
=========== ========================= =========================
2012-07-02 2012-07-02 13:30:00+00:00 2012-07-02 20:00:00+00:00
2012-07-03 2012-07-03 13:30:00+00:00 2012-07-03 17:00:00+00:00
2012-07-05 2012-07-05 13:30:00+00:00 2012-07-05 20:00:00+00:00
2012-07-06 2012-07-06 13:30:00+00:00 2012-07-06 20:00:00+00:00
2012-07-09 2012-07-09 13:30:00+00:00 2012-07-09 20:00:00+00:00
2012-07-10 2012-07-10 13:30:00+00:00 2012-07-10 20:00:00+00:00

mcal.date_range(early, frequency='1D')

DatetimeIndex(['2012-07-02 20:00:00+00:00', '2012-07-03 17:00:00+00:00',
               '2012-07-05 20:00:00+00:00', '2012-07-06 20:00:00+00:00',
               '2012-07-09 20:00:00+00:00', '2012-07-10 20:00:00+00:00'],
               dtype='datetime64[ns, UTC]', freq=None)

mcal.date_range(early, frequency='1H')

DatetimeIndex(['2012-07-02 14:30:00+00:00', '2012-07-02 15:30:00+00:00',
               '2012-07-02 16:30:00+00:00', '2012-07-02 17:30:00+00:00',
               '2012-07-02 18:30:00+00:00', '2012-07-02 19:30:00+00:00',
               '2012-07-02 20:00:00+00:00', '2012-07-03 14:30:00+00:00',
               '2012-07-03 15:30:00+00:00', '2012-07-03 16:30:00+00:00',
               '2012-07-03 17:00:00+00:00', '2012-07-05 14:30:00+00:00',
               '2012-07-05 15:30:00+00:00', '2012-07-05 16:30:00+00:00',
               '2012-07-05 17:30:00+00:00', '2012-07-05 18:30:00+00:00',
               '2012-07-05 19:30:00+00:00', '2012-07-05 20:00:00+00:00',
               '2012-07-06 14:30:00+00:00', '2012-07-06 15:30:00+00:00',
               '2012-07-06 16:30:00+00:00', '2012-07-06 17:30:00+00:00',
               '2012-07-06 18:30:00+00:00', '2012-07-06 19:30:00+00:00',
               '2012-07-06 20:00:00+00:00', '2012-07-09 14:30:00+00:00',
               '2012-07-09 15:30:00+00:00', '2012-07-09 16:30:00+00:00',
               '2012-07-09 17:30:00+00:00', '2012-07-09 18:30:00+00:00',
               '2012-07-09 19:30:00+00:00', '2012-07-09 20:00:00+00:00',
               '2012-07-10 14:30:00+00:00', '2012-07-10 15:30:00+00:00',
               '2012-07-10 16:30:00+00:00', '2012-07-10 17:30:00+00:00',
               '2012-07-10 18:30:00+00:00', '2012-07-10 19:30:00+00:00',
               '2012-07-10 20:00:00+00:00'],
              dtype='datetime64[ns, UTC]', freq=None)

Si vous voulez simplement obtenir le pandas Calendrier des fêtes qui peut être utilisé dans d'autres fonctions pandas qui prennent cela comme argument:

holidays = nyse.holidays()

holidays.holidays[-5:]
(numpy.datetime64('2030-05-27'),
 numpy.datetime64('2030-07-04'),
 numpy.datetime64('2030-09-02'),
 numpy.datetime64('2030-11-28'),
 numpy.datetime64('2030-12-25'))
17
Ryan Sheftel

Vous devez créer une nouvelle instance de classe: cal1 = tradingCal(). Cela fonctionne pour moi.

from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory, GoodFriday
from datetime import datetime

cal = get_calendar('USFederalHolidayCalendar')  # Create calendar instance
cal.rules.pop(7)                                # Remove Veteran's Day rule
cal.rules.pop(6)                                # Remove Columbus Day rule
tradingCal = HolidayCalendarFactory('TradingCalendar', cal, GoodFriday)
print tradingCal.rules

#new instance of class
cal1 = tradingCal()

print cal1.holidays(datetime(2014, 12, 31), datetime(2016, 12, 31))

#DatetimeIndex(['2015-01-01', '2015-01-19', '2015-02-16', '2015-04-03',
#               '2015-05-25', '2015-07-03', '2015-09-07', '2015-11-26',
#               '2015-12-25', '2016-01-01', '2016-01-18', '2016-02-15',
#              '2016-03-25', '2016-05-30', '2016-07-04', '2016-09-05',
#               '2016-11-24', '2016-12-26'],
#              dtype='datetime64[ns]', freq=None, tz=None)
12
jezrael