web-dev-qa-db-fra.com

CS231n: Comment calculer le gradient pour la fonction de perte Softmax?

Je suis en train de regarder des vidéos de Stanford CS231: Réseaux de neurones convolutifs pour la reconnaissance visuelle, mais je ne comprends pas très bien comment calculer le gradient analytique de la fonction de perte en softmax à l'aide de numpy.

À partir de this stackexchange answer, le dégradé softmax est calculé comme suit:

 enter image description here

L'implémentation Python ci-dessus est:

num_classes = W.shape[0]
num_train = X.shape[1]
for i in range(num_train):
  for j in range(num_classes):
    p = np.exp(f_i[j])/sum_i
    dW[j, :] += (p-(j == y[i])) * X[:, i]

Quelqu'un pourrait-il expliquer le fonctionnement de l'extrait ci-dessus? L'implémentation détaillée de softmax est également incluse ci-dessous.

def softmax_loss_naive(W, X, y, reg):
  """
  Softmax loss function, naive implementation (with loops)
  Inputs:
  - W: C x D array of weights
  - X: D x N array of data. Data are D-dimensional columns
  - y: 1-dimensional array of length N with labels 0...K-1, for K classes
  - reg: (float) regularization strength
  Returns:
  a Tuple of:
  - loss as single float
  - gradient with respect to weights W, an array of same size as W
  """
  # Initialize the loss and gradient to zero.
  loss = 0.0
  dW = np.zeros_like(W)

  #############################################################################
  # Compute the softmax loss and its gradient using explicit loops.           #
  # Store the loss in loss and the gradient in dW. If you are not careful     #
  # here, it is easy to run into numeric instability. Don't forget the        #
  # regularization!                                                           #
  #############################################################################

  # Get shapes
  num_classes = W.shape[0]
  num_train = X.shape[1]

  for i in range(num_train):
    # Compute vector of scores
    f_i = W.dot(X[:, i]) # in R^{num_classes}

    # Normalization trick to avoid numerical instability, per http://cs231n.github.io/linear-classify/#softmax
    log_c = np.max(f_i)
    f_i -= log_c

    # Compute loss (and add to it, divided later)
    # L_i = - f(x_i)_{y_i} + log \sum_j e^{f(x_i)_j}
    sum_i = 0.0
    for f_i_j in f_i:
      sum_i += np.exp(f_i_j)
    loss += -f_i[y[i]] + np.log(sum_i)

    # Compute gradient
    # dw_j = 1/num_train * \sum_i[x_i * (p(y_i = j)-Ind{y_i = j} )]
    # Here we are computing the contribution to the inner sum for a given i.
    for j in range(num_classes):
      p = np.exp(f_i[j])/sum_i
      dW[j, :] += (p-(j == y[i])) * X[:, i]

  # Compute average
  loss /= num_train
  dW /= num_train

  # Regularization
  loss += 0.5 * reg * np.sum(W * W)
  dW += reg*W

  return loss, dW
18
Nghia Tran

Pas sûr que cela aide, mais:

y_i est vraiment la fonction indicatrice y_i, comme décrit ici . Ceci forme l'expression (j == y[i]) dans le code.

En outre, la pente de la perte par rapport aux poids est:

y_i

y_i

qui est l'origine du X[:,i] dans le code.

12
Ben Barsdell

Je sais que c'est tard, mais voici ma réponse:

Je suppose que vous connaissez la fonction de perte Softmax de cs231n. Nous savons que:enter image description here

Comme dans le cas de la fonction de perte SVM, les gradients sont les suivants: enter image description here

J'espère que ça a aidé.

0
Jawher.B