Dans le sklearn.linear_model.LinearRegression
méthode, il existe un paramètre qui est fit_intercept = TRUE
ou fit_intercept = FALSE
. Je me demande si nous le définissons sur VRAI, cela ajoute-t-il une colonne d'interception supplémentaire de tous les 1 à votre ensemble de données? Si j'ai déjà un ensemble de données avec une colonne de 1, fit_intercept = FALSE
en tient compte ou l'oblige-t-il à s'adapter à un modèle d'interception nulle?
Mise à jour: Il semble que les gens ne comprennent pas ma question. La question est essentiellement ce que SI j'avais déjà une colonne de 1 dans mon ensemble de données de prédicteurs (les 1 sont pour l'interception). ENSUITE,
1) si j'utilise fit_intercept = FALSE
, supprimera-t-il la colonne des 1?
2) si j'utilise fit_intercept = TRUE
, ajoutera-t-il une colonne EXTRA de 1?
fit_intercept=False
définit l'ordonnée à l'origine sur 0. Si fit_intercept=True
, l'ordonnée à l'origine sera déterminée par la ligne de meilleur ajustement.
from sklearn.linear_model import LinearRegression
from sklearn.datasets import make_regression
import numpy as np
import matplotlib.pyplot as plt
bias = 100
X = np.arange(1000).reshape(-1,1)
y_true = np.ravel(X.dot(0.3) + bias)
noise = np.random.normal(0, 60, 1000)
y = y_true + noise
lr_fi_true = LinearRegression(fit_intercept=True)
lr_fi_false = LinearRegression(fit_intercept=False)
lr_fi_true.fit(X, y)
lr_fi_false.fit(X, y)
print('Intercept when fit_intercept=True : {:.5f}'.format(lr_fi_true.intercept_))
print('Intercept when fit_intercept=False : {:.5f}'.format(lr_fi_false.intercept_))
lr_fi_true_yhat = np.dot(X, lr_fi_true.coef_) + lr_fi_true.intercept_
lr_fi_false_yhat = np.dot(X, lr_fi_false.coef_) + lr_fi_false.intercept_
plt.scatter(X, y, label='Actual points')
plt.plot(X, lr_fi_true_yhat, 'r--', label='fit_intercept=True')
plt.plot(X, lr_fi_false_yhat, 'r-', label='fit_intercept=False')
plt.legend()
plt.vlines(0, 0, y.max())
plt.hlines(bias, X.min(), X.max())
plt.hlines(0, X.min(), X.max())
plt.show()
Cet exemple imprime:
Intercept when fit_intercept=True : 100.32210
Intercept when fit_intercept=False : 0.00000
Visuellement, il devient clair ce que fit_intercept
Est-ce que. Quand fit_intercept=True
, la ligne de meilleur ajustement est autorisée à "s'adapter" à l'axe des y (près de 100 dans cet exemple). Quand fit_intercept=False
, l'ordonnée à l'origine est forcée à l'origine (0, 0).
Que se passe-t-il si j'inclus une colonne de uns ou de zéros et que je définis
fit_intercept
à Vrai ou Faux?
Ci-dessous montre un exemple de la façon d'inspecter cela.
from sklearn.linear_model import LinearRegression
from sklearn.datasets import make_regression
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(1)
bias = 100
X = np.arange(1000).reshape(-1,1)
y_true = np.ravel(X.dot(0.3) + bias)
noise = np.random.normal(0, 60, 1000)
y = y_true + noise
# with column of ones
X_with_ones = np.hstack((np.ones((X.shape[0], 1)), X))
for b,data in ((True, X), (False, X), (True, X_with_ones), (False, X_with_ones)):
lr = LinearRegression(fit_intercept=b)
lr.fit(data, y)
print(lr.intercept_, lr.coef_)
À emporter:
# fit_intercept=True, no column of zeros or ones
104.156765787 [ 0.29634031]
# fit_intercept=False, no column of zeros or ones
0.0 [ 0.45265361]
# fit_intercept=True, column of zeros or ones
104.156765787 [ 0. 0.29634031]
# fit_intercept=False, column of zeros or ones
0.0 [ 104.15676579 0.29634031]