J'ai une colonne TimeDelta avec des valeurs qui ressemblent à ceci:
2 jours 21: 54: 00.000000000
J'aimerais avoir un flotteur représentant le nombre de jours, disons ici 2 + 21/24 = 2,875, en négligeant les minutes. Existe-t-il un moyen simple de procéder? J'ai vu une réponse suggérant
res['Ecart_lacher_collecte'].apply(lambda x: float(x.item().days+x.item().hours/24.))
Mais j'obtiens "AttributeError: l'objet 'str' n'a pas d'attribut 'item'"
La version de Numpy est '1.10.4' Pandas est u'0.17.1 '
Les colonnes ont été initialement obtenues avec:
lac['DateHeureLacher'] = pd.to_datetime(lac['Date lacher']+' '+lac['Heure lacher'],format='%d/%m/%Y %H:%M:%S')
cap['DateCollecte'] = pd.to_datetime(cap['Date de collecte']+' '+cap['Heure de collecte'],format='%d/%m/%Y %H:%M:%S')
dans un premier script. Puis dans un deuxième:
res = pd.merge(lac, cap, how='inner', on=['Loc'])
res['DateHeureLacher'] = pd.to_datetime(res['DateHeureLacher'],format='%Y-%m-%d %H:%M:%S')
res['DateCollecte'] = pd.to_datetime(res['DateCollecte'],format='%Y-%m-%d %H:%M:%S')
res['Ecart_lacher_collecte'] = res['DateCollecte'] - res['DateHeureLacher']
Peut-être que l'enregistrer en csv changer leurs types en chaîne? La transformation que j'essaie de faire est dans un troisième script.
Sexe_x PiegeLacher latL longL Loc Col_x DateHeureLacher Nb envolees PiegeCapture latC longC Col_y Sexe_y Effectif DateCollecte DatePose Ecart_lacher_collecte Dist_m
M Q0-002 1629238 237877 H Rouge 2011-02-04 17:15:00 928 Q0-002 1629238 237877 Rouge M 1 2011-02-07 15:09:00 2011-02-07 12:14:00 2 days 21:54:00.000000000 0
M Q0-002 1629238 237877 H Rouge 2011-02-04 17:15:00 928 Q0-002 1629238 237877 Rouge M 4 2011-02-07 12:14:00 2011-02-07 09:42:00 2 days 18:59:00.000000000 0
M Q0-002 1629238 237877 H Rouge 2011-02-04 17:15:00 928 Q0-003 1629244 237950 Rouge M 1 2011-02-07 15:10:00 2011-02-07 12:16:00 2 days 21:55:00.000000000 75
res.info ():
Sexe_x 922 non-null object
PiegeLacher 922 non-null object
latL 922 non-null int64
longL 922 non-null int64
Loc 922 non-null object
Col_x 922 non-null object
DateHeureLacher 922 non-null object
Nb envolees 922 non-null int64
PiegeCapture 922 non-null object
latC 922 non-null int64
longC 922 non-null int64
Col_y 922 non-null object
Sexe_y 922 non-null object
Effectif 922 non-null int64
DateCollecte 922 non-null object
DatePose 922 non-null object
Ecart_lacher_collecte 922 non-null object
Dist_m 922 non-null int64
Vous pouvez utiliser dt.total_seconds
et divisez ceci par le nombre total de secondes dans une journée, par exemple:
In [25]:
df = pd.DataFrame({'dates':pd.date_range(dt.datetime(2016,1,1, 12,15,3), periods=10)})
df
Out[25]:
dates
0 2016-01-01 12:15:03
1 2016-01-02 12:15:03
2 2016-01-03 12:15:03
3 2016-01-04 12:15:03
4 2016-01-05 12:15:03
5 2016-01-06 12:15:03
6 2016-01-07 12:15:03
7 2016-01-08 12:15:03
8 2016-01-09 12:15:03
9 2016-01-10 12:15:03
In [26]:
df['time_delta'] = df['dates'] - pd.datetime(2015,11,6,8,10)
df
Out[26]:
dates time_delta
0 2016-01-01 12:15:03 56 days 04:05:03
1 2016-01-02 12:15:03 57 days 04:05:03
2 2016-01-03 12:15:03 58 days 04:05:03
3 2016-01-04 12:15:03 59 days 04:05:03
4 2016-01-05 12:15:03 60 days 04:05:03
5 2016-01-06 12:15:03 61 days 04:05:03
6 2016-01-07 12:15:03 62 days 04:05:03
7 2016-01-08 12:15:03 63 days 04:05:03
8 2016-01-09 12:15:03 64 days 04:05:03
9 2016-01-10 12:15:03 65 days 04:05:03
In [27]:
df['total_days_td'] = df['time_delta'].dt.total_seconds() / (24 * 60 * 60)
df
Out[27]:
dates time_delta total_days_td
0 2016-01-01 12:15:03 56 days 04:05:03 56.170174
1 2016-01-02 12:15:03 57 days 04:05:03 57.170174
2 2016-01-03 12:15:03 58 days 04:05:03 58.170174
3 2016-01-04 12:15:03 59 days 04:05:03 59.170174
4 2016-01-05 12:15:03 60 days 04:05:03 60.170174
5 2016-01-06 12:15:03 61 days 04:05:03 61.170174
6 2016-01-07 12:15:03 62 days 04:05:03 62.170174
7 2016-01-08 12:15:03 63 days 04:05:03 63.170174
8 2016-01-09 12:15:03 64 days 04:05:03 64.170174
9 2016-01-10 12:15:03 65 days 04:05:03 65.170174
Vous pouvez utiliser pd.to_timedelta
ou np.timedelta64
pour définir une durée et diviser par ceci:
# set up as per @EdChum
df['total_days_td'] = df['time_delta'] / pd.to_timedelta(1, unit='D')
df['total_days_td'] = df['time_delta'] / np.timedelta64(1, 'D')
Avez-vous essayé de l'utiliser à la place?
res['Ecart_lacher_collecte'].apply(lambda x: (x.total_seconds()//(3600*24)) + (x.total_seconds()%(3600*24)//3600)/24))
Le premier terme est le Jour (2 dans votre cas) Le deuxième terme est le rapport horaire en négligeant les minutes (21/24 dans votre cas)
Si vous ne voulez pas que les données des minutes et des secondes soient négligées, et avez plutôt besoin d'un ratio qui considère toutes les secondes de la journée, le code est comme mentionné ci-dessous:
res['Ecart_lacher_collecte'].apply(lambda x: (x.total_seconds()/(3600*24))