web-dev-qa-db-fra.com

De TimeDelta aux jours flottants en Pandas

J'ai une colonne TimeDelta avec des valeurs qui ressemblent à ceci:

2 jours 21: 54: 00.000000000

J'aimerais avoir un flotteur représentant le nombre de jours, disons ici 2 + 21/24 = 2,875, en négligeant les minutes. Existe-t-il un moyen simple de procéder? J'ai vu une réponse suggérant

res['Ecart_lacher_collecte'].apply(lambda x: float(x.item().days+x.item().hours/24.))

Mais j'obtiens "AttributeError: l'objet 'str' n'a pas d'attribut 'item'"

La version de Numpy est '1.10.4' Pandas est u'0.17.1 '

Les colonnes ont été initialement obtenues avec:

lac['DateHeureLacher'] = pd.to_datetime(lac['Date lacher']+' '+lac['Heure lacher'],format='%d/%m/%Y %H:%M:%S')
cap['DateCollecte'] = pd.to_datetime(cap['Date de collecte']+' '+cap['Heure de collecte'],format='%d/%m/%Y %H:%M:%S')

dans un premier script. Puis dans un deuxième:

res = pd.merge(lac, cap, how='inner', on=['Loc'])
res['DateHeureLacher']  = pd.to_datetime(res['DateHeureLacher'],format='%Y-%m-%d %H:%M:%S')
res['DateCollecte']  = pd.to_datetime(res['DateCollecte'],format='%Y-%m-%d %H:%M:%S')
res['Ecart_lacher_collecte'] = res['DateCollecte'] - res['DateHeureLacher']

Peut-être que l'enregistrer en csv changer leurs types en chaîne? La transformation que j'essaie de faire est dans un troisième script.

Sexe_x  PiegeLacher latL    longL   Loc Col_x   DateHeureLacher Nb envolees PiegeCapture    latC    longC   Col_y   Sexe_y  Effectif    DateCollecte    DatePose    Ecart_lacher_collecte   Dist_m
M   Q0-002  1629238 237877  H   Rouge   2011-02-04 17:15:00 928 Q0-002  1629238 237877  Rouge   M   1   2011-02-07 15:09:00 2011-02-07 12:14:00 2 days 21:54:00.000000000   0
M   Q0-002  1629238 237877  H   Rouge   2011-02-04 17:15:00 928 Q0-002  1629238 237877  Rouge   M   4   2011-02-07 12:14:00 2011-02-07 09:42:00 2 days 18:59:00.000000000   0
M   Q0-002  1629238 237877  H   Rouge   2011-02-04 17:15:00 928 Q0-003  1629244 237950  Rouge   M   1   2011-02-07 15:10:00 2011-02-07 12:16:00 2 days 21:55:00.000000000   75

res.info ():

Sexe_x                   922 non-null object
PiegeLacher              922 non-null object
latL                     922 non-null int64
longL                    922 non-null int64
Loc                      922 non-null object
Col_x                    922 non-null object
DateHeureLacher          922 non-null object
Nb envolees              922 non-null int64
PiegeCapture             922 non-null object
latC                     922 non-null int64
longC                    922 non-null int64
Col_y                    922 non-null object
Sexe_y                   922 non-null object
Effectif                 922 non-null int64
DateCollecte             922 non-null object
DatePose                 922 non-null object
Ecart_lacher_collecte    922 non-null object
Dist_m                   922 non-null int64
14
alpagarou

Vous pouvez utiliser dt.total_seconds et divisez ceci par le nombre total de secondes dans une journée, par exemple:

In [25]:
df = pd.DataFrame({'dates':pd.date_range(dt.datetime(2016,1,1, 12,15,3), periods=10)})
df

Out[25]:
                dates
0 2016-01-01 12:15:03
1 2016-01-02 12:15:03
2 2016-01-03 12:15:03
3 2016-01-04 12:15:03
4 2016-01-05 12:15:03
5 2016-01-06 12:15:03
6 2016-01-07 12:15:03
7 2016-01-08 12:15:03
8 2016-01-09 12:15:03
9 2016-01-10 12:15:03

In [26]:
df['time_delta'] = df['dates'] - pd.datetime(2015,11,6,8,10)
df

Out[26]:
                dates       time_delta
0 2016-01-01 12:15:03 56 days 04:05:03
1 2016-01-02 12:15:03 57 days 04:05:03
2 2016-01-03 12:15:03 58 days 04:05:03
3 2016-01-04 12:15:03 59 days 04:05:03
4 2016-01-05 12:15:03 60 days 04:05:03
5 2016-01-06 12:15:03 61 days 04:05:03
6 2016-01-07 12:15:03 62 days 04:05:03
7 2016-01-08 12:15:03 63 days 04:05:03
8 2016-01-09 12:15:03 64 days 04:05:03
9 2016-01-10 12:15:03 65 days 04:05:03

In [27]:
df['total_days_td'] = df['time_delta'].dt.total_seconds() / (24 * 60 * 60)
df

Out[27]:
                dates       time_delta  total_days_td
0 2016-01-01 12:15:03 56 days 04:05:03      56.170174
1 2016-01-02 12:15:03 57 days 04:05:03      57.170174
2 2016-01-03 12:15:03 58 days 04:05:03      58.170174
3 2016-01-04 12:15:03 59 days 04:05:03      59.170174
4 2016-01-05 12:15:03 60 days 04:05:03      60.170174
5 2016-01-06 12:15:03 61 days 04:05:03      61.170174
6 2016-01-07 12:15:03 62 days 04:05:03      62.170174
7 2016-01-08 12:15:03 63 days 04:05:03      63.170174
8 2016-01-09 12:15:03 64 days 04:05:03      64.170174
9 2016-01-10 12:15:03 65 days 04:05:03      65.170174
6
EdChum

Vous pouvez utiliser pd.to_timedelta ou np.timedelta64 pour définir une durée et diviser par ceci:

# set up as per @EdChum
df['total_days_td'] = df['time_delta'] / pd.to_timedelta(1, unit='D')
df['total_days_td'] = df['time_delta'] / np.timedelta64(1, 'D')
2
jpp

Avez-vous essayé de l'utiliser à la place?

res['Ecart_lacher_collecte'].apply(lambda x: (x.total_seconds()//(3600*24)) + (x.total_seconds()%(3600*24)//3600)/24))

Le premier terme est le Jour (2 dans votre cas) Le deuxième terme est le rapport horaire en négligeant les minutes (21/24 dans votre cas)

Si vous ne voulez pas que les données des minutes et des secondes soient négligées, et avez plutôt besoin d'un ratio qui considère toutes les secondes de la journée, le code est comme mentionné ci-dessous:

res['Ecart_lacher_collecte'].apply(lambda x: (x.total_seconds()/(3600*24))
0
sharinganSawant