J'essaie de prédire les ventes hebdomadaires en utilisant ARMA Modèles ARIMA. Je n'ai pas trouvé de fonction pour ajuster l'ordre (p, d, q) dans statsmodels
. Actuellement, R a une fonction forecast::auto.arima()
qui réglera les paramètres (p, d, q).
Comment puis-je choisir le bon ordre pour mon modèle? Existe-t-il des bibliothèques disponibles dans python à cette fin?)
Vous pouvez mettre en œuvre un certain nombre d'approches:
ARIMAResults
inclure aic
et bic
. Par leur définition, (voir ici et ici ), ces critères pénalisent pour le nombre de paramètres du modèle. Vous pouvez donc utiliser ces chiffres pour comparer les modèles. Aussi scipy a optimize.brute
qui effectue une recherche dans l’espace des paramètres spécifiés. Donc, un flux de travail comme celui-ci devrait fonctionner:
def objfunc(order, exog, endog):
from statsmodels.tsa.arima_model import ARIMA
fit = ARIMA(endog, order, exog).fit()
return fit.aic()
from scipy.optimize import brute
grid = (slice(1, 3, 1), slice(1, 3, 1), slice(1, 3, 1))
brute(objfunc, grid, args=(exog, endog), finish=None)
Assurez-vous d’appeler brute
avec finish=None
.
Vous pouvez obtenir pvalues
de ARIMAResults
. Il est donc facile d'implémenter une sorte d'algorithme pas à pas dans lequel le degré du modèle augmente dans la dimension, ce qui permet d'obtenir la valeur p la plus basse pour le paramètre ajouté.
Utilisation ARIMAResults.predict
pour valider les modèles de remplacement. La meilleure approche serait de garder la fin de la série chronologique (par exemple les 5% de données les plus récentes) en dehors de l'échantillon et d'utiliser ces points pour obtenir le erreur de test des modèles ajustés.
Il existe maintenant un package python approprié pour faire auto-arima. https://github.com/tgsmith61591/pmdarima
Docs: http://alkaline-ml.com/pmdarima
Exemple d'utilisation: https://github.com/tgsmith61591/pmdarima/blob/master/examples/quick_start_example.ipynb
def evaluate_arima_model(X, arima_order):
# prepare training dataset
train_size = int(len(X) * 0.90)
train, test = X[0:train_size], X[train_size:]
history = [x for x in train]
# make predictions
predictions = list()
for t in range(len(test)):
model = ARIMA(history, order=arima_order)
model_fit = model.fit(disp=0)
yhat = model_fit.forecast()[0]
predictions.append(yhat)
history.append(test[t])
# calculate out of sample error
error = mean_squared_error(test, predictions)
return error
# evaluate combinations of p, d and q values for an ARIMA model
def evaluate_models(dataset, p_values, d_values, q_values):
dataset = dataset.astype('float32')
best_score, best_cfg = float("inf"), None
for p in p_values:
for d in d_values:
for q in q_values:
order = (p,d,q)
try:
mse = evaluate_arima_model(dataset, order)
if mse < best_score:
best_score, best_cfg = mse, order
print('ARIMA%s MSE=%.3f' % (order,mse))
except:
continue
print('Best ARIMA%s MSE=%.3f' % (best_cfg, best_score))
# load dataset
def parser(x):
return datetime.strptime('190'+x, '%Y-%m')
import datetime
p_values = [4,5,6,7,8]
d_values = [0,1,2]
q_values = [2,3,4,5,6]
warnings.filterwarnings("ignore")
evaluate_models(train, p_values, d_values, q_values)
Cela vous donnera les valeurs p, d, q, puis utilisez les valeurs de votre modèle ARIMA
J'ai écrit ces fonctions utilitaires pour calculer directement les valeurs pdq get_PDQ_parallel nécessite trois données d'entrée qui sont une série avec un horodatage (date/heure) comme index. n_jobs fournira le nombre de processeurs parallèles. la sortie sera dataframe avec aic et bic avec order = (P, D, Q) dans l'index p et q l'intervalle est [0,12] alors que d est [0,1]
import statsmodels
from statsmodels import api as sm
from sklearn.metrics import r2_score,mean_squared_error
from sklearn.utils import check_array
from functools import partial
from multiprocessing import Pool
def get_aic_bic(order,series):
aic=np.nan
bic=np.nan
#print(series.shape,order)
try:
arima_mod=statsmodels.tsa.arima_model.ARIMA(series,order=order,freq='H').fit(transparams=True,method='css')
aic=arima_mod.aic
bic=arima_mod.bic
print(order,aic,bic)
except:
pass
return aic,bic
def get_PDQ_parallel(data,n_jobs=7):
p_val=13
q_val=13
d_vals=2
pdq_vals=[ (p,d,q) for p in range(p_val) for d in range(d_vals) for q in range(q_val)]
get_aic_bic_partial=partial(get_aic_bic,series=data)
p = Pool(n_jobs)
res=p.map(get_aic_bic_partial, pdq_vals)
p.close()
return pd.DataFrame(res,index=pdq_vals,columns=['aic','bic'])
solution possible
df=pd.read_csv("http://vincentarelbundock.github.io/Rdatasets/csv/datasets/AirPassengers.csv")
# Define the p, d and q parameters to take any value between 0 and 2
p = d = q = range(0, 2)
print(p)
import itertools
import warnings
# Generate all different combinations of p, q and q triplets
pdq = list(itertools.product(p, d, q))
print(pdq)
# Generate all different combinations of seasonal p, q and q triplets
seasonal_pdq = [(x[0], x[1], x[2], 12) for x in list(itertools.product(p, d, q))]
print('Examples of parameter combinations for Seasonal ARIMA...')
print('SARIMAX: {} x {}'.format(pdq[1], seasonal_pdq[1]))
print('SARIMAX: {} x {}'.format(pdq[1], seasonal_pdq[2]))
print('SARIMAX: {} x {}'.format(pdq[2], seasonal_pdq[3]))
print('SARIMAX: {} x {}'.format(pdq[2], seasonal_pdq[4]))
Examples of parameter combinations for Seasonal ARIMA...
SARIMAX: (0, 0, 1) x (0, 0, 1, 12)
SARIMAX: (0, 0, 1) x (0, 1, 0, 12)
SARIMAX: (0, 1, 0) x (0, 1, 1, 12)
SARIMAX: (0, 1, 0) x (1, 0, 0, 12)
y=df
#warnings.filterwarnings("ignore") # specify to ignore warning messages
for param in pdq:
for param_seasonal in seasonal_pdq:
try:
mod = sm.tsa.statespace.SARIMAX(y,
order=param,
seasonal_order=param_seasonal,
enforce_stationarity=False,
enforce_invertibility=False)
results = mod.fit()
print('ARIMA{}x{}12 - AIC:{}'.format(param, param_seasonal, results.aic))
except:
continue
ARIMA(0, 0, 0)x(0, 0, 1, 12)12 - AIC:3618.0303991426763
ARIMA(0, 0, 0)x(0, 1, 1, 12)12 - AIC:2824.7439963684233
ARIMA(0, 0, 0)x(1, 0, 0, 12)12 - AIC:2942.2733127230185
ARIMA(0, 0, 0)x(1, 0, 1, 12)12 - AIC:2922.178151133141
ARIMA(0, 0, 0)x(1, 1, 0, 12)12 - AIC:2767.105066400224
ARIMA(0, 0, 0)x(1, 1, 1, 12)12 - AIC:2691.233398643673
ARIMA(0, 0, 1)x(0, 0, 0, 12)12 - AIC:3890.816777796087
ARIMA(0, 0, 1)x(0, 0, 1, 12)12 - AIC:3541.1171286722
ARIMA(0, 0, 1)x(0, 1, 0, 12)12 - AIC:3028.8377323188824
ARIMA(0, 0, 1)x(0, 1, 1, 12)12 - AIC:2746.77973129136
ARIMA(0, 0, 1)x(1, 0, 0, 12)12 - AIC:3583.523640623017
ARIMA(0, 0, 1)x(1, 0, 1, 12)12 - AIC:3531.2937768990187
ARIMA(0, 0, 1)x(1, 1, 0, 12)12 - AIC:2781.198675746594
ARIMA(0, 0, 1)x(1, 1, 1, 12)12 - AIC:2720.7023088205974
ARIMA(0, 1, 0)x(0, 0, 1, 12)12 - AIC:3029.089945668332
ARIMA(0, 1, 0)x(0, 1, 1, 12)12 - AIC:2568.2832251221016
ARIMA(0, 1, 0)x(1, 0, 0, 12)12 - AIC:2841.315781459511
ARIMA(0, 1, 0)x(1, 0, 1, 12)12 - AIC:2815.4011044132576
ARIMA(0, 1, 0)x(1, 1, 0, 12)12 - AIC:2588.533386513587
ARIMA(0, 1, 0)x(1, 1, 1, 12)12 - AIC:2569.9453272483315
ARIMA(0, 1, 1)x(0, 0, 0, 12)12 - AIC:3327.5177587522303
ARIMA(0, 1, 1)x(0, 0, 1, 12)12 - AIC:2984.716706112334
ARIMA(0, 1, 1)x(0, 1, 0, 12)12 - AIC:2789.128542154043
ARIMA(0, 1, 1)x(0, 1, 1, 12)12 - AIC:2537.0293659293943
ARIMA(0, 1, 1)x(1, 0, 0, 12)12 - AIC:2984.4555708516436
ARIMA(0, 1, 1)x(1, 0, 1, 12)12 - AIC:2939.460958374472
ARIMA(0, 1, 1)x(1, 1, 0, 12)12 - AIC:2578.7862352774437
ARIMA(0, 1, 1)x(1, 1, 1, 12)12 - AIC:2537.771484229265
ARIMA(1, 0, 0)x(0, 0, 0, 12)12 - AIC:3391.5248913820797
ARIMA(1, 0, 0)x(0, 0, 1, 12)12 - AIC:3038.142074281268
C:\Users\Dell\Anaconda3\lib\site-packages\statsmodels\base\model.py:496: ConvergenceWarning: Maximum Likelihood optimization failed to converge. Check mle_retvals
"Check mle_retvals", ConvergenceWarning)
ARIMA(1, 0, 0)x(0, 1, 0, 12)12 - AIC:2839.809192263449
ARIMA(1, 0, 0)x(0, 1, 1, 12)12 - AIC:2588.50367175184
ARIMA(1, 0, 0)x(1, 0, 0, 12)12 - AIC:2993.4630440139595
ARIMA(1, 0, 0)x(1, 0, 1, 12)12 - AIC:2995.049216326931
ARIMA(1, 0, 0)x(1, 1, 0, 12)12 - AIC:2588.2463284315304
ARIMA(1, 0, 0)x(1, 1, 1, 12)12 - AIC:2592.80110502723
ARIMA(1, 0, 1)x(0, 0, 0, 12)12 - AIC:3352.0350133621478
ARIMA(1, 0, 1)x(0, 0, 1, 12)12 - AIC:3006.5493366627807
ARIMA(1, 0, 1)x(0, 1, 0, 12)12 - AIC:2810.6423724894516
ARIMA(1, 0, 1)x(0, 1, 1, 12)12 - AIC:2559.584031948852
ARIMA(1, 0, 1)x(1, 0, 0, 12)12 - AIC:2981.2250436794675
ARIMA(1, 0, 1)x(1, 0, 1, 12)12 - AIC:2959.3142304724834
ARIMA(1, 0, 1)x(1, 1, 0, 12)12 - AIC:2579.8245645892207
ARIMA(1, 0, 1)x(1, 1, 1, 12)12 - AIC:2563.13922589258
ARIMA(1, 1, 0)x(0, 0, 0, 12)12 - AIC:3354.7462930846423
ARIMA(1, 1, 0)x(0, 0, 1, 12)12 - AIC:3006.702997636003
ARIMA(1, 1, 0)x(0, 1, 0, 12)12 - AIC:2809.3844175191666
ARIMA(1, 1, 0)x(0, 1, 1, 12)12 - AIC:2558.484602766447
ARIMA(1, 1, 0)x(1, 0, 0, 12)12 - AIC:2959.885810636943
ARIMA(1, 1, 0)x(1, 0, 1, 12)12 - AIC:2960.712709764296
ARIMA(1, 1, 0)x(1, 1, 0, 12)12 - AIC:2557.945907092698
ARIMA(1, 1, 0)x(1, 1, 1, 12)12 - AIC:2559.274166458508
ARIMA(1, 1, 1)x(0, 0, 0, 12)12 - AIC:3326.3285511700374
ARIMA(1, 1, 1)x(0, 0, 1, 12)12 - AIC:2985.868532151721
ARIMA(1, 1, 1)x(0, 1, 0, 12)12 - AIC:2790.7677149967103
ARIMA(1, 1, 1)x(0, 1, 1, 12)12 - AIC:2538.820635541546
ARIMA(1, 1, 1)x(1, 0, 0, 12)12 - AIC:2963.2789505804294
ARIMA(1, 1, 1)x(1, 0, 1, 12)12 - AIC:2941.2436984747465
ARIMA(1, 1, 1)x(1, 1, 0, 12)12 - AIC:2559.8258191422606
ARIMA(1, 1, 1)x(1, 1, 1, 12)12 - AIC:2539.712354465328
voir aussi https://github.com/decisionstats/pythonfordatascience/blob/master/time%2Bseries%20 (1) .ipynb
A partir de maintenant, nous pouvons directement utiliser le paquet pyramid-arima de pypi