J'essaie d'utiliser un réseau de neurones keras pour reconnaître les images sur toile des chiffres dessinés et produire le chiffre. J'ai enregistré le réseau de neurones et utilise Django pour exécuter l'interface Web. Mais chaque fois que je l'exécute, j'obtiens une erreur de serveur interne et une erreur sur le code côté serveur. L'erreur dit Exception: erreur lors de la vérification: dense_input_1 devrait avoir la forme (None, 784) mais le tableau a la forme (784, 1) . Ma seule vue principale est
from Django.shortcuts import render
from Django.http import HttpResponse
import StringIO
from PIL import Image
import numpy as np
import re
from keras.models import model_from_json
def home(request):
if request.method=="POST":
vari=request.POST.get("imgBase64","")
imgstr=re.search(r'base64,(.*)', vari).group(1)
tempimg = StringIO.StringIO(imgstr.decode('base64'))
im=Image.open(tempimg).convert("L")
im.thumbnail((28,28), Image.ANTIALIAS)
img_np= np.asarray(im)
img_np=img_np.flatten()
img_np.astype("float32")
img_np=img_np/255
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights("model.h5")
# evaluate loaded model on test data
loaded_model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
output=loaded_model.predict(img_np)
score=output.tolist()
return HttpResponse(score)
else:
return render(request, "digit/index.html")
Les liens que j'ai consultés sont:
Modifier Conformément à la suggestion de Rohan, ceci est ma trace de pile
Internal Server Error: /home/
Traceback (most recent call last):
File "/usr/local/lib/python2.7/dist-packages/Django/core/handlers/base.py", line 149, in get_response
response = self.process_exception_by_middleware(e, request)
File "/usr/local/lib/python2.7/dist-packages/Django/core/handlers/base.py", line 147, in get_response
response = wrapped_callback(request, *callback_args, **callback_kwargs)
File "/home/vivek/keras/neural/digit/views.py", line 27, in home
output=loaded_model.predict(img_np)
File "/usr/local/lib/python2.7/dist-packages/keras/models.py", line 671, in predict
return self.model.predict(x, batch_size=batch_size, verbose=verbose)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 1161, in predict
check_batch_dim=False)
File "/usr/local/lib/python2.7/dist-packages/keras/engine/training.py", line 108, in standardize_input_data
str(array.shape))
Exception: Error when checking : expected dense_input_1 to have shape (None, 784) but got array with shape (784, 1)
De plus, j'ai mon modèle que j'ai utilisé pour former le réseau au départ.
import numpy
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.utils import np_utils
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
(X_train, y_train), (X_test, y_test) = mnist.load_data()
for item in y_train.shape:
print item
num_pixels = X_train.shape[1] * X_train.shape[2]
X_train = X_train.reshape(X_train.shape[0], num_pixels).astype('float32')
X_test = X_test.reshape(X_test.shape[0], num_pixels).astype('float32')
# normalize inputs from 0-255 to 0-1
X_train = X_train / 255
X_test = X_test / 255
print X_train.shape
# one hot encode outputs
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
num_classes = y_test.shape[1]
# define baseline model
def baseline_model():
# create model
model = Sequential()
model.add(Dense(num_pixels, input_dim=num_pixels, init='normal', activation='relu'))
model.add(Dense(num_classes, init='normal', activation='softmax'))
# Compile model
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
# build the model
model = baseline_model()
# Fit the model
model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_Epoch=20, batch_size=200, verbose=1)
# Final evaluation of the model
scores = model.evaluate(X_test, y_test, verbose=0)
print("Baseline Error: %.2f%%" % (100-scores[1]*100))
# serialize model to JSON
model_json = model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("model.h5")
print("Saved model to disk")
Modifier J'ai essayé de remodeler l'img en (1,784) et il a également échoué, donnant la même erreur que le titre de cette question
Merci pour l'aide et laissez des commentaires sur la façon dont je devrais ajouter à la question.
Vous demandez au réseau neuronal d'évaluer 784 cas avec une entrée chacun au lieu d'un seul cas avec 784 entrées. J'ai eu le même problème et je l'ai résolu en ayant un tableau avec un seul élément qui est un tableau des entrées. Voir l'exemple ci-dessous, le premier fonctionne tandis que le second donne la même erreur que vous rencontrez.
model.predict(np.array([[0.5, 0.0, 0.1, 0.0, 0.0, 0.4, 0.0, 0.0, 0.1, 0.0, 0.0]]))
model.predict(np.array([0.5, 0.0, 0.1, 0.0, 0.0, 0.4, 0.0, 0.0, 0.1, 0.0, 0.0]))
j'espère que cela le résoudra aussi pour vous :)