J'ai le fichier d'entrée suivant:
"Name",97.7,0A,0A,65M,0A,100M,5M,75M,100M,90M,90M,99M,90M,0#,0N#,
Et je le lis avec:
#!/usr/bin/env python
import pandas as pd
import sys
import numpy as np
filename = sys.argv[1]
df = pd.read_csv(filename,header=None)
for col in df.columns[2:]:
df[col] = df[col].str.extract(r'(\d+\.*\d*)').astype(np.float)
print df
Cependant, j'ai l'erreur
df[col] = df[col].str.extract(r'(\d+\.*\d*)').astype(np.float)
File "/usr/local/lib/python2.7/dist-packages/pandas/core/generic.py", line 2241, in __getattr__
return object.__getattribute__(self, name)
File "/usr/local/lib/python2.7/dist-packages/pandas/core/base.py", line 188, in __get__
return self.construct_accessor(instance)
File "/usr/local/lib/python2.7/dist-packages/pandas/core/base.py", line 528, in _make_str_accessor
raise AttributeError("Can only use .str accessor with string "
AttributeError: Can only use .str accessor with string values, which use np.object_ dtype in pandas
Cela a bien fonctionné dans les pandas 0.14 mais ne fonctionne pas dans les pandas 0.17.0.
Cela se produit parce que votre dernière colonne est vide, elle est donc convertie en NaN
:
In [417]:
t="""'Name',97.7,0A,0A,65M,0A,100M,5M,75M,100M,90M,90M,99M,90M,0#,0N#,"""
df = pd.read_csv(io.StringIO(t), header=None)
df
Out[417]:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 \
0 'Name' 97.7 0A 0A 65M 0A 100M 5M 75M 100M 90M 90M 99M 90M 0#
15 16
0 0N# NaN
Si vous coupez votre plage jusqu'à la dernière ligne, cela fonctionne:
In [421]:
for col in df.columns[2:-1]:
df[col] = df[col].str.extract(r'(\d+\.*\d*)').astype(np.float)
df
Out[421]:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 'Name' 97.7 0 0 65 0 100 5 75 100 90 90 99 90 0 0 NaN
Sinon, vous pouvez simplement sélectionner les colonnes qui sont object
dtype et exécuter le code (en ignorant la première colonne car il s'agit de l'entrée 'Nom'):
In [428]:
for col in df.select_dtypes([np.object]).columns[1:]:
df[col] = df[col].str.extract(r'(\d+\.*\d*)').astype(np.float)
df
Out[428]:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 'Name' 97.7 0 0 65 0 100 5 75 100 90 90 99 90 0 0 NaN
Dans ce cas, nous devons utiliser la méthode str.replace()
sur cette série, mais nous devons d’abord la convertir en type str
:
df1.Patient = 's125','s45',s588','s244','s125','s123'
df1 = pd.read_csv("C:\\Users\\Gangwar\\Desktop\\competitions\\cancer prediction\\kaggle_to_students.csv")
df1.Patient = df1.Patient.astype(str)
df1['Patient'] = df1['Patient'].str.replace('s','').astype(int)
J'ai eu cette erreur en travaillant dans Eclipse. Il s'est avéré que l'interprète de projet était en quelque sorte (après une mise à jour, je crois) réinitialisé sur Python 2.7. Le fait de revenir à Python 3.6 a résolu ce problème. Tout cela a entraîné plusieurs accidents, redémarrages et avertissements. Après plusieurs minutes de problèmes, cela semble réglé maintenant.
Bien que je sache que ce n’est pas une solution au problème posé ici, j’ai pensé que cela pourrait être utile pour d’autres, car je suis arrivé sur cette page après avoir recherché cette erreur.