Je joue avec Natural Language Toolkit (NLTK).
Sa documentation ( Book et HOWTO ) est assez volumineuse et les exemples sont parfois légèrement avancés.
Y a-t-il des exemples bons mais basiques d'utilisations/applications de NLTK? Je pense à des choses comme les articles NTLK sur le blog Stream Hacker .
Voici mon propre exemple pratique pour le bénéfice de quiconque recherche cette question (excusez l'exemple de texte, c'était la première chose que j'ai trouvée sur Wikipedia ):
import nltk
import pprint
tokenizer = None
tagger = None
def init_nltk():
global tokenizer
global tagger
tokenizer = nltk.tokenize.RegexpTokenizer(r'\w+|[^\w\s]+')
tagger = nltk.UnigramTagger(nltk.corpus.brown.tagged_sents())
def tag(text):
global tokenizer
global tagger
if not tokenizer:
init_nltk()
tokenized = tokenizer.tokenize(text)
tagged = tagger.tag(tokenized)
tagged.sort(lambda x,y:cmp(x[1],y[1]))
return tagged
def main():
text = """Mr Blobby is a fictional character who featured on Noel
Edmonds' Saturday night entertainment show Noel's House Party,
which was often a ratings winner in the 1990s. Mr Blobby also
appeared on the Jamie Rose show of 1997. He was designed as an
outrageously over the top parody of a one-dimensional, mute novelty
character, which ironically made him distinctive, absurd and popular.
He was a large pink humanoid, covered with yellow spots, sporting a
permanent toothy grin and jiggling eyes. He communicated by saying
the Word "blobby" in an electronically-altered voice, expressing
his moods through tone of voice and repetition.
There was a Mrs. Blobby, seen briefly in the video, and sold as a
doll.
However Mr Blobby actually started out as part of the 'Gotcha'
feature during the show's second series (originally called 'Gotcha
Oscars' until the threat of legal action from the Academy of Motion
Picture Arts and Sciences[citation needed]), in which celebrities
were caught out in a Candid Camera style prank. Celebrities such as
dancer Wayne Sleep and rugby union player Will Carling would be
enticed to take part in a fictitious children's programme based around
their profession. Mr Blobby would clumsily take part in the activity,
knocking over the set, causing mayhem and saying "blobby blobby
blobby", until finally when the prank was revealed, the Blobby
costume would be opened - revealing Noel inside. This was all the more
surprising for the "victim" as during rehearsals Blobby would be
played by an actor wearing only the arms and legs of the costume and
speaking in a normal manner.[citation needed]"""
tagged = tag(text)
l = list(set(tagged))
l.sort(lambda x,y:cmp(x[1],y[1]))
pprint.pprint(l)
if __== '__main__':
main()
Sortie:
[('rugby', None),
('Oscars', None),
('1990s', None),
('",', None),
('Candid', None),
('"', None),
('blobby', None),
('Edmonds', None),
('Mr', None),
('outrageously', None),
('.[', None),
('toothy', None),
('Celebrities', None),
('Gotcha', None),
(']),', None),
('Jamie', None),
('humanoid', None),
('Blobby', None),
('Carling', None),
('enticed', None),
('programme', None),
('1997', None),
('s', None),
("'", "'"),
('[', '('),
('(', '('),
(']', ')'),
(',', ','),
('.', '.'),
('all', 'ABN'),
('the', 'AT'),
('an', 'AT'),
('a', 'AT'),
('be', 'BE'),
('were', 'BED'),
('was', 'BEDZ'),
('is', 'BEZ'),
('and', 'CC'),
('one', 'CD'),
('until', 'CS'),
('as', 'CS'),
('This', 'DT'),
('There', 'EX'),
('of', 'IN'),
('inside', 'IN'),
('from', 'IN'),
('around', 'IN'),
('with', 'IN'),
('through', 'IN'),
('-', 'IN'),
('on', 'IN'),
('in', 'IN'),
('by', 'IN'),
('during', 'IN'),
('over', 'IN'),
('for', 'IN'),
('distinctive', 'JJ'),
('permanent', 'JJ'),
('mute', 'JJ'),
('popular', 'JJ'),
('such', 'JJ'),
('fictional', 'JJ'),
('yellow', 'JJ'),
('pink', 'JJ'),
('fictitious', 'JJ'),
('normal', 'JJ'),
('dimensional', 'JJ'),
('legal', 'JJ'),
('large', 'JJ'),
('surprising', 'JJ'),
('absurd', 'JJ'),
('Will', 'MD'),
('would', 'MD'),
('style', 'NN'),
('threat', 'NN'),
('novelty', 'NN'),
('union', 'NN'),
('prank', 'NN'),
('winner', 'NN'),
('parody', 'NN'),
('player', 'NN'),
('actor', 'NN'),
('character', 'NN'),
('victim', 'NN'),
('costume', 'NN'),
('action', 'NN'),
('activity', 'NN'),
('dancer', 'NN'),
('grin', 'NN'),
('doll', 'NN'),
('top', 'NN'),
('mayhem', 'NN'),
('citation', 'NN'),
('part', 'NN'),
('repetition', 'NN'),
('manner', 'NN'),
('tone', 'NN'),
('Picture', 'NN'),
('entertainment', 'NN'),
('night', 'NN'),
('series', 'NN'),
('voice', 'NN'),
('Mrs', 'NN'),
('video', 'NN'),
('Motion', 'NN'),
('profession', 'NN'),
('feature', 'NN'),
('Word', 'NN'),
('Academy', 'NN-TL'),
('Camera', 'NN-TL'),
('Party', 'NN-TL'),
('House', 'NN-TL'),
('eyes', 'NNS'),
('spots', 'NNS'),
('rehearsals', 'NNS'),
('ratings', 'NNS'),
('arms', 'NNS'),
('celebrities', 'NNS'),
('children', 'NNS'),
('moods', 'NNS'),
('legs', 'NNS'),
('Sciences', 'NNS-TL'),
('Arts', 'NNS-TL'),
('Wayne', 'NP'),
('Rose', 'NP'),
('Noel', 'NP'),
('Saturday', 'NR'),
('second', 'OD'),
('his', 'PP$'),
('their', 'PP$'),
('him', 'PPO'),
('He', 'PPS'),
('more', 'QL'),
('However', 'RB'),
('actually', 'RB'),
('also', 'RB'),
('clumsily', 'RB'),
('originally', 'RB'),
('only', 'RB'),
('often', 'RB'),
('ironically', 'RB'),
('briefly', 'RB'),
('finally', 'RB'),
('electronically', 'RB-HL'),
('out', 'RP'),
('to', 'TO'),
('show', 'VB'),
('Sleep', 'VB'),
('take', 'VB'),
('opened', 'VBD'),
('played', 'VBD'),
('caught', 'VBD'),
('appeared', 'VBD'),
('revealed', 'VBD'),
('started', 'VBD'),
('saying', 'VBG'),
('causing', 'VBG'),
('expressing', 'VBG'),
('knocking', 'VBG'),
('wearing', 'VBG'),
('speaking', 'VBG'),
('sporting', 'VBG'),
('revealing', 'VBG'),
('jiggling', 'VBG'),
('sold', 'VBN'),
('called', 'VBN'),
('made', 'VBN'),
('altered', 'VBN'),
('based', 'VBN'),
('designed', 'VBN'),
('covered', 'VBN'),
('communicated', 'VBN'),
('needed', 'VBN'),
('seen', 'VBN'),
('set', 'VBN'),
('featured', 'VBN'),
('which', 'WDT'),
('who', 'WPS'),
('when', 'WRB')]
La PNL en général est très utile, vous voudrez peut-être élargir votre recherche à l'application générale de l'analyse de texte. J'ai utilisé NLTK pour aider MOSS 2010 en générant la taxonomie des fichiers en extrayant les cartes conceptuelles. Cela a très bien fonctionné. Il ne faut pas longtemps avant que les fichiers commencent à se regrouper de manière utile.
Souvent, pour comprendre l'analyse de texte, vous devez penser en tangentes à la façon dont vous êtes habitué à penser. Par exemple, l'analyse de texte est extrêmement utile pour la découverte. La plupart des gens, cependant, ne savent même pas quelle est la différence entre la recherche et la découverte. Si vous lisez sur ces sujets, vous "découvrirez" probablement des façons dont vous pourriez vouloir mettre NLTK au travail.
Considérez également votre vision du monde des fichiers texte sans NLTK. Vous avez un tas de chaînes de longueur aléatoire séparées par des espaces et des signes de ponctuation. Une partie de la ponctuation change la façon dont elle est utilisée, comme le point (qui est également un point décimal et un marqueur de suffixe pour une abréviation.) Avec NLTK, vous obtenez des mots et plus au point que vous obtenez des parties du discours. Vous avez maintenant une idée du contenu. Utilisez NLTK pour découvrir les concepts et les actions du document. Utilisez NLTK pour obtenir la "signification" du document. La signification dans ce cas se réfère aux relations essentielles dans le document.
C'est une bonne chose d'être curieux au sujet de NLTK. Text Analytics devrait connaître une percée considérable au cours des prochaines années. Ceux qui le comprennent seront mieux à même de mieux profiter des nouvelles opportunités.
Je suis l'auteur de streamhacker.com (et merci pour la mention, je reçois une bonne quantité de trafic de clics de cette question particulière). Qu'essayez-vous précisément de faire? NLTK a beaucoup d'outils pour faire diverses choses, mais manque quelque peu d'informations claires sur l'utilisation des outils et la meilleure façon de les utiliser. Il est également orienté vers les problèmes académiques, et il peut donc être difficile de traduire les exemples pédagogiques en solutions pratiques.