web-dev-qa-db-fra.com

Faire pivoter l'image et rogner les bordures noires

Mon application: j'essaie de faire pivoter une image (en utilisant OpenCV et Python)

Rotating Images

Pour le moment, j'ai développé le code ci-dessous qui fait pivoter une image d'entrée, la remplissant de bordures noires, me donnant A. Ce que je veux, c'est B - la plus grande fenêtre de recadrage de zone possible dans l'image pivotée. J'appelle cela la boîte boundED alignée sur l'axe.

C'est essentiellement la même chose que Rotation et recadrage , mais je ne peux pas obtenir la réponse à cette question pour travailler. De plus, cette réponse n'est apparemment valable que pour les images carrées. Mes images sont rectangulaires.

Code à donner à A:

import cv2
import numpy as np


def getTranslationMatrix2d(dx, dy):
    """
    Returns a numpy affine transformation matrix for a 2D translation of
    (dx, dy)
    """
    return np.matrix([[1, 0, dx], [0, 1, dy], [0, 0, 1]])


def rotateImage(image, angle):
    """
    Rotates the given image about it's centre
    """

    image_size = (image.shape[1], image.shape[0])
    image_center = Tuple(np.array(image_size) / 2)

    rot_mat = np.vstack([cv2.getRotationMatrix2D(image_center, angle, 1.0), [0, 0, 1]])
    trans_mat = np.identity(3)

    w2 = image_size[0] * 0.5
    h2 = image_size[1] * 0.5

    rot_mat_notranslate = np.matrix(rot_mat[0:2, 0:2])

    tl = (np.array([-w2, h2]) * rot_mat_notranslate).A[0]
    tr = (np.array([w2, h2]) * rot_mat_notranslate).A[0]
    bl = (np.array([-w2, -h2]) * rot_mat_notranslate).A[0]
    br = (np.array([w2, -h2]) * rot_mat_notranslate).A[0]

    x_coords = [pt[0] for pt in [tl, tr, bl, br]]
    x_pos = [x for x in x_coords if x > 0]
    x_neg = [x for x in x_coords if x < 0]

    y_coords = [pt[1] for pt in [tl, tr, bl, br]]
    y_pos = [y for y in y_coords if y > 0]
    y_neg = [y for y in y_coords if y < 0]

    right_bound = max(x_pos)
    left_bound = min(x_neg)
    top_bound = max(y_pos)
    bot_bound = min(y_neg)

    new_w = int(abs(right_bound - left_bound))
    new_h = int(abs(top_bound - bot_bound))
    new_image_size = (new_w, new_h)

    new_midx = new_w * 0.5
    new_midy = new_h * 0.5

    dx = int(new_midx - w2)
    dy = int(new_midy - h2)

    trans_mat = getTranslationMatrix2d(dx, dy)
    affine_mat = (np.matrix(trans_mat) * np.matrix(rot_mat))[0:2, :]
    result = cv2.warpAffine(image, affine_mat, new_image_size, flags=cv2.INTER_LINEAR)

    return result
55
aaronsnoswell

Ainsi, après avoir étudié de nombreuses solutions revendiquées, j'ai finalement trouvé une méthode qui fonctionne; La réponse par Andri et Magnus Hoff on Calculer le plus grand rectangle dans un rectangle tourné .

Le code Python contient la méthode d'intérêt - largest_rotated_rect - et une courte démo.

import math
import cv2
import numpy as np


def rotate_image(image, angle):
    """
    Rotates an OpenCV 2 / NumPy image about it's centre by the given angle
    (in degrees). The returned image will be large enough to hold the entire
    new image, with a black background
    """

    # Get the image size
    # No that's not an error - NumPy stores image matricies backwards
    image_size = (image.shape[1], image.shape[0])
    image_center = Tuple(np.array(image_size) / 2)

    # Convert the OpenCV 3x2 rotation matrix to 3x3
    rot_mat = np.vstack(
        [cv2.getRotationMatrix2D(image_center, angle, 1.0), [0, 0, 1]]
    )

    rot_mat_notranslate = np.matrix(rot_mat[0:2, 0:2])

    # Shorthand for below calcs
    image_w2 = image_size[0] * 0.5
    image_h2 = image_size[1] * 0.5

    # Obtain the rotated coordinates of the image corners
    rotated_coords = [
        (np.array([-image_w2,  image_h2]) * rot_mat_notranslate).A[0],
        (np.array([ image_w2,  image_h2]) * rot_mat_notranslate).A[0],
        (np.array([-image_w2, -image_h2]) * rot_mat_notranslate).A[0],
        (np.array([ image_w2, -image_h2]) * rot_mat_notranslate).A[0]
    ]

    # Find the size of the new image
    x_coords = [pt[0] for pt in rotated_coords]
    x_pos = [x for x in x_coords if x > 0]
    x_neg = [x for x in x_coords if x < 0]

    y_coords = [pt[1] for pt in rotated_coords]
    y_pos = [y for y in y_coords if y > 0]
    y_neg = [y for y in y_coords if y < 0]

    right_bound = max(x_pos)
    left_bound = min(x_neg)
    top_bound = max(y_pos)
    bot_bound = min(y_neg)

    new_w = int(abs(right_bound - left_bound))
    new_h = int(abs(top_bound - bot_bound))

    # We require a translation matrix to keep the image centred
    trans_mat = np.matrix([
        [1, 0, int(new_w * 0.5 - image_w2)],
        [0, 1, int(new_h * 0.5 - image_h2)],
        [0, 0, 1]
    ])

    # Compute the tranform for the combined rotation and translation
    affine_mat = (np.matrix(trans_mat) * np.matrix(rot_mat))[0:2, :]

    # Apply the transform
    result = cv2.warpAffine(
        image,
        affine_mat,
        (new_w, new_h),
        flags=cv2.INTER_LINEAR
    )

    return result


def largest_rotated_rect(w, h, angle):
    """
    Given a rectangle of size wxh that has been rotated by 'angle' (in
    radians), computes the width and height of the largest possible
    axis-aligned rectangle within the rotated rectangle.

    Original JS code by 'Andri' and Magnus Hoff from Stack Overflow

    Converted to Python by Aaron Snoswell
    """

    quadrant = int(math.floor(angle / (math.pi / 2))) & 3
    sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
    alpha = (sign_alpha % math.pi + math.pi) % math.pi

    bb_w = w * math.cos(alpha) + h * math.sin(alpha)
    bb_h = w * math.sin(alpha) + h * math.cos(alpha)

    gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)

    delta = math.pi - alpha - gamma

    length = h if (w < h) else w

    d = length * math.cos(alpha)
    a = d * math.sin(alpha) / math.sin(delta)

    y = a * math.cos(gamma)
    x = y * math.tan(gamma)

    return (
        bb_w - 2 * x,
        bb_h - 2 * y
    )


def crop_around_center(image, width, height):
    """
    Given a NumPy / OpenCV 2 image, crops it to the given width and height,
    around it's centre point
    """

    image_size = (image.shape[1], image.shape[0])
    image_center = (int(image_size[0] * 0.5), int(image_size[1] * 0.5))

    if(width > image_size[0]):
        width = image_size[0]

    if(height > image_size[1]):
        height = image_size[1]

    x1 = int(image_center[0] - width * 0.5)
    x2 = int(image_center[0] + width * 0.5)
    y1 = int(image_center[1] - height * 0.5)
    y2 = int(image_center[1] + height * 0.5)

    return image[y1:y2, x1:x2]


def demo():
    """
    Demos the largest_rotated_rect function
    """

    image = cv2.imread("lenna_rectangle.png")
    image_height, image_width = image.shape[0:2]

    cv2.imshow("Original Image", image)

    print "Press [enter] to begin the demo"
    print "Press [q] or Escape to quit"

    key = cv2.waitKey(0)
    if key == ord("q") or key == 27:
        exit()

    for i in np.arange(0, 360, 0.5):
        image_orig = np.copy(image)
        image_rotated = rotate_image(image, i)
        image_rotated_cropped = crop_around_center(
            image_rotated,
            *largest_rotated_rect(
                image_width,
                image_height,
                math.radians(i)
            )
        )

        key = cv2.waitKey(2)
        if(key == ord("q") or key == 27):
            exit()

        cv2.imshow("Original Image", image_orig)
        cv2.imshow("Rotated Image", image_rotated)
        cv2.imshow("Cropped Image", image_rotated_cropped)

    print "Done"


if __== "__main__":
    demo()

Image Rotation Demo

Placez simplement cette image (recadrée pour démontrer qu'elle fonctionne avec des images non carrées) dans le même répertoire que le fichier ci-dessus, puis exécutez-la.

25
aaronsnoswell

Le calcul derrière cette solution/implémentation équivaut à cette solution d'une question analogue , mais les formules sont simplifiées et évitent les singularités. C'est python avec la même interface que largest_rotated_rect De l'autre solution, mais donnant une zone plus grande dans presque tous les cas (toujours l'optimum prouvé):

def rotatedRectWithMaxArea(w, h, angle):
  """
  Given a rectangle of size wxh that has been rotated by 'angle' (in
  radians), computes the width and height of the largest possible
  axis-aligned rectangle (maximal area) within the rotated rectangle.
  """
  if w <= 0 or h <= 0:
    return 0,0

  width_is_longer = w >= h
  side_long, side_short = (w,h) if width_is_longer else (h,w)

  # since the solutions for angle, -angle and 180-angle are all the same,
  # if suffices to look at the first quadrant and the absolute values of sin,cos:
  sin_a, cos_a = abs(math.sin(angle)), abs(math.cos(angle))
  if side_short <= 2.*sin_a*cos_a*side_long or abs(sin_a-cos_a) < 1e-10:
    # half constrained case: two crop corners touch the longer side,
    #   the other two corners are on the mid-line parallel to the longer line
    x = 0.5*side_short
    wr,hr = (x/sin_a,x/cos_a) if width_is_longer else (x/cos_a,x/sin_a)
  else:
    # fully constrained case: crop touches all 4 sides
    cos_2a = cos_a*cos_a - sin_a*sin_a
    wr,hr = (w*cos_a - h*sin_a)/cos_2a, (h*cos_a - w*sin_a)/cos_2a

  return wr,hr

Voici une comparaison de la fonction avec l'autre solution:

>>> wl,hl = largest_rotated_rect(1500,500,math.radians(20))
>>> print (wl,hl),', area=',wl*hl
(828.2888697391496, 230.61639227890998) , area= 191016.990904
>>> wm,hm = rotatedRectWithMaxArea(1500,500,math.radians(20))
>>> print (wm,hm),', area=',wm*hm
(730.9511000407718, 266.044443118978) , area= 194465.478358

Avec l'angle a dans [0,pi/2[, Le cadre de sélection de l'image pivotée (largeur w, hauteur h) a les dimensions suivantes:

  • largeur w_bb = w*cos(a) + h*sin(a)
  • hauteur h_bb = w*sin(a) + h*cos(a)

Si w_r, h_r Sont la largeur et la hauteur optimales calculées de l'image recadrée, alors les encarts de la boîte englobante sont:

  • dans le sens horizontal: (w_bb-w_r)/2
  • dans le sens vertical: (h_bb-h_r)/2

Preuve:

La recherche du rectangle aligné sur l'axe entre deux lignes parallèles qui a une aire maximale est un problème d'optimisation avec un paramètre, par ex. x comme dans cette figure: animated parameter

Soit s la distance entre les deux lignes parallèles (elle se révélera être le côté le plus court du rectangle pivoté). Alors les côtés a, b du rectangle recherché ont un rapport constant avec x, s-x, Resp., À savoir x = un péché α et (sx) = b cos α:

enter image description here

Ainsi, maximiser la zone a*b Signifie maximiser x*(s-x). En raison du "théorème de la hauteur" pour les triangles rectangles, nous connaissons x*(s-x) = p*q = h*h. Par conséquent, la zone maximale est atteinte à x = s-x = s/2, C'est-à-dire que les deux coins E, G entre les lignes parallèles sont sur la ligne médiane:

enter image description here

Cette solution n'est valable que si ce rectangle maximal s'insère dans le rectangle pivoté. Par conséquent, la diagonale EG ne doit pas être plus longue que l'autre côté l du rectangle pivoté. Puisque

EG = AF + DH = s/2 * (cot α + tan α) = s/(2 * sin α cos α) = s/sin 2 α

nous avons la condition s ≤ l sin 2 α, où s et l sont le côté le plus court et le plus long du rectangle pivoté.

Dans le cas de s> l sin 2 α le paramètre x doit être plus petit (que s/2) et s.t. tous les coins du rectangle recherché sont chacun sur un côté du rectangle tourné. Cela conduit à l'équation

x * lit α + (s-x) * tan α = l

donnant x = sin α (l cos α - s sin α)/cos 2 α. De a = x/sin α et b = (s-x)/cos α nous obtenons les formules utilisées ci-dessus.

85
coproc

Félicitations pour l'excellent travail! Je voulais utiliser votre code dans OpenCV avec la bibliothèque C++, j'ai donc fait la conversion qui suit. Peut-être que cette approche pourrait être utile à d'autres personnes.

#include <iostream>
#include <opencv.hpp>

#define PI 3.14159265359

using namespace std;

double degree_to_radian(double angle)
{
    return angle * PI / 180;
}

cv::Mat rotate_image (cv::Mat image, double angle)
{
    // Rotates an OpenCV 2 image about its centre by the given angle
    // (in radians). The returned image will be large enough to hold the entire
    // new image, with a black background

    cv::Size image_size = cv::Size(image.rows, image.cols);
    cv::Point image_center = cv::Point(image_size.height/2, image_size.width/2);

    // Convert the OpenCV 3x2 matrix to 3x3
    cv::Mat rot_mat = cv::getRotationMatrix2D(image_center, angle, 1.0);
    double row[3] = {0.0, 0.0, 1.0};
    cv::Mat new_row = cv::Mat(1, 3, rot_mat.type(), row);
    rot_mat.Push_back(new_row);


    double slice_mat[2][2] = {
        {rot_mat.col(0).at<double>(0), rot_mat.col(1).at<double>(0)},
        {rot_mat.col(0).at<double>(1), rot_mat.col(1).at<double>(1)}
    };

    cv::Mat rot_mat_nontranslate = cv::Mat(2, 2, rot_mat.type(), slice_mat);

    double image_w2 = image_size.width * 0.5;
    double image_h2 = image_size.height * 0.5;

    // Obtain the rotated coordinates of the image corners
    std::vector<cv::Mat> rotated_coords;

    double image_dim_d_1[2] = { -image_h2, image_w2 };
    cv::Mat image_dim = cv::Mat(1, 2, rot_mat.type(), image_dim_d_1);
    rotated_coords.Push_back(cv::Mat(image_dim * rot_mat_nontranslate));


    double image_dim_d_2[2] = { image_h2, image_w2 };
    image_dim = cv::Mat(1, 2, rot_mat.type(), image_dim_d_2);
    rotated_coords.Push_back(cv::Mat(image_dim * rot_mat_nontranslate));


    double image_dim_d_3[2] = { -image_h2, -image_w2 };
    image_dim = cv::Mat(1, 2, rot_mat.type(), image_dim_d_3);
    rotated_coords.Push_back(cv::Mat(image_dim * rot_mat_nontranslate));


    double image_dim_d_4[2] = { image_h2, -image_w2 };
    image_dim = cv::Mat(1, 2, rot_mat.type(), image_dim_d_4);
    rotated_coords.Push_back(cv::Mat(image_dim * rot_mat_nontranslate));


    // Find the size of the new image
    vector<double> x_coords, x_pos, x_neg;
    for (int i = 0; i < rotated_coords.size(); i++)
    {
        double pt = rotated_coords[i].col(0).at<double>(0);
        x_coords.Push_back(pt);
        if (pt > 0)
            x_pos.Push_back(pt);
        else
            x_neg.Push_back(pt);
    }

    vector<double> y_coords, y_pos, y_neg;
    for (int i = 0; i < rotated_coords.size(); i++)
    {
        double pt = rotated_coords[i].col(1).at<double>(0);
        y_coords.Push_back(pt);
        if (pt > 0)
            y_pos.Push_back(pt);
        else
            y_neg.Push_back(pt);
    }


    double right_bound = *max_element(x_pos.begin(), x_pos.end());
    double left_bound = *min_element(x_neg.begin(), x_neg.end());
    double top_bound = *max_element(y_pos.begin(), y_pos.end());
    double bottom_bound = *min_element(y_neg.begin(), y_neg.end());

    int new_w = int(abs(right_bound - left_bound));
    int new_h = int(abs(top_bound - bottom_bound));

    // We require a translation matrix to keep the image centred
    double trans_mat[3][3] = {
        {1, 0, int(new_w * 0.5 - image_w2)},
        {0, 1, int(new_h * 0.5 - image_h2)},
        {0, 0, 1},
    };


    // Compute the transform for the combined rotation and translation
    cv::Mat aux_affine_mat = (cv::Mat(3, 3, rot_mat.type(), trans_mat) * rot_mat);
    cv::Mat affine_mat = cv::Mat(2, 3, rot_mat.type(), NULL);
    affine_mat.Push_back(aux_affine_mat.row(0));
    affine_mat.Push_back(aux_affine_mat.row(1));

    // Apply the transform
    cv::Mat output;
    cv::warpAffine(image, output, affine_mat, cv::Size(new_h, new_w), cv::INTER_LINEAR);

    return output;
}

cv::Size largest_rotated_rect(int h, int w, double angle)
{
    // Given a rectangle of size wxh that has been rotated by 'angle' (in
    // radians), computes the width and height of the largest possible
    // axis-aligned rectangle within the rotated rectangle.

    // Original JS code by 'Andri' and Magnus Hoff from Stack Overflow

    // Converted to Python by Aaron Snoswell (https://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders)
    // Converted to C++ by Eliezer Bernart

    int quadrant = int(floor(angle/(PI/2))) & 3;
    double sign_alpha = ((quadrant & 1) == 0) ? angle : PI - angle;
    double alpha = fmod((fmod(sign_alpha, PI) + PI), PI);

    double bb_w = w * cos(alpha) + h * sin(alpha);
    double bb_h = w * sin(alpha) + h * cos(alpha);

    double gamma = w < h ? atan2(bb_w, bb_w) : atan2(bb_h, bb_h);

    double delta = PI - alpha - gamma;

    int length = w < h ? h : w;

    double d = length * cos(alpha);
    double a = d * sin(alpha) / sin(delta);
    double y = a * cos(gamma);
    double x = y * tan(gamma);

    return cv::Size(bb_w - 2 * x, bb_h - 2 * y);
}

// for those interested in the actual optimum - contributed by coproc
#include <algorithm>
cv::Size really_largest_rotated_rect(int h, int w, double angle)
{
  // Given a rectangle of size wxh that has been rotated by 'angle' (in
  // radians), computes the width and height of the largest possible
  // axis-aligned rectangle within the rotated rectangle.
  if (w <= 0 || h <= 0)
    return cv::Size(0,0);

  bool width_is_longer = w >= h;
  int side_long = w, side_short = h;
  if (!width_is_longer)
    std::swap(side_long, side_short);

  // since the solutions for angle, -angle and pi-angle are all the same,
  // it suffices to look at the first quadrant and the absolute values of sin,cos:
  double sin_a = fabs(math.sin(angle)), cos_a = fabs(math.cos(angle));
  double wr,hr;
  if (side_short <= 2.*sin_a*cos_a*side_long)
  {
    // half constrained case: two crop corners touch the longer side,
    // the other two corners are on the mid-line parallel to the longer line
    x = 0.5*side_short;
    wr = x/sin_a;
    hr = x/cos_a;
    if (!width_is_longer)
      std::swap(wr,hr);
  }
  else
  { 
    // fully constrained case: crop touches all 4 sides
    double cos_2a = cos_a*cos_a - sin_a*sin_a;
    wr = (w*cos_a - h*sin_a)/cos_2a;
    hr = (h*cos_a - w*sin_a)/cos_2a;
  }

  return cv::Size(wr,hr);
}

cv::Mat crop_around_center(cv::Mat image, int height, int width)
{
    // Given a OpenCV 2 image, crops it to the given width and height,
    // around it's centre point

    cv::Size image_size = cv::Size(image.rows, image.cols);
    cv::Point image_center = cv::Point(int(image_size.height * 0.5), int(image_size.width * 0.5));

    if (width > image_size.width)
        width = image_size.width;

    if (height > image_size.height)
        height = image_size.height;

    int x1 = int(image_center.x - width  * 0.5);
    int x2 = int(image_center.x + width  * 0.5);
    int y1 = int(image_center.y - height * 0.5);
    int y2 = int(image_center.y + height * 0.5);


    return image(cv::Rect(cv::Point(y1, x1), cv::Point(y2,x2)));
}

void demo(cv::Mat image)
{
    // Demos the largest_rotated_rect function
    int image_height = image.rows;
    int image_width = image.cols;

    for (float i = 0.0; i < 360.0; i+=0.5)
    {
        cv::Mat image_orig = image.clone();
        cv::Mat image_rotated = rotate_image(image, i);

        cv::Size largest_rect = largest_rotated_rect(image_height, image_width, degree_to_radian(i));
        // for those who trust math (added by coproc):
        cv::Size largest_rect2 = really_largest_rotated_rect(image_height, image_width, degree_to_radian(i));
        cout << "area1 = " << largest_rect.height * largest_rect.width << endl;
        cout << "area2 = " << largest_rect2.height * largest_rect2.width << endl;

        cv::Mat image_rotated_cropped = crop_around_center(
                    image_rotated,
                    largest_rect.height,
                    largest_rect.width
                    );

        cv::imshow("Original Image", image_orig);
        cv::imshow("Rotated Image", image_rotated);
        cv::imshow("Cropped image", image_rotated_cropped);

        if (char(cv::waitKey(15)) == 'q')
            break;
    }

}

int main (int argc, char* argv[])
{
    cv::Mat image = cv::imread(argv[1]);

    if (image.empty())
    {
        cout << "> The input image was not found." << endl;
        exit(EXIT_FAILURE);
    }

    cout << "Press [s] to begin or restart the demo" << endl;
    cout << "Press [q] to quit" << endl;

    while (true)
    {
        cv::imshow("Original Image", image);
        char opt = char(cv::waitKey(0));
        switch (opt) {
        case 's':
            demo(image);
            break;
        case 'q':
            return EXIT_SUCCESS;
        default:
            break;
        }
    }

    return EXIT_SUCCESS;
}
14
Eliezer Bernart

Une petite mise à jour pour la brièveté qui utilise l'excellente bibliothèque imutils .

def rotated_rect(w, h, angle):
    """
    Given a rectangle of size wxh that has been rotated by 'angle' (in
    radians), computes the width and height of the largest possible
    axis-aligned rectangle within the rotated rectangle.

    Original JS code by 'Andri' and Magnus Hoff from Stack Overflow

    Converted to Python by Aaron Snoswell
    """
    angle = math.radians(angle)
    quadrant = int(math.floor(angle / (math.pi / 2))) & 3
    sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
    alpha = (sign_alpha % math.pi + math.pi) % math.pi

    bb_w = w * math.cos(alpha) + h * math.sin(alpha)
    bb_h = w * math.sin(alpha) + h * math.cos(alpha)

    gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)

    delta = math.pi - alpha - gamma

    length = h if (w < h) else w

    d = length * math.cos(alpha)
    a = d * math.sin(alpha) / math.sin(delta)

    y = a * math.cos(gamma)
    x = y * math.tan(gamma)

    return (bb_w - 2 * x, bb_h - 2 * y)

def crop(img, w, h):
    x, y = int(img.shape[1] * .5), int(img.shape[0] * .5)

    return img[
        int(np.ceil(y - h * .5)) : int(np.floor(y + h * .5)),
        int(np.ceil(x - w * .5)) : int(np.floor(x + h * .5))
    ]

def rotate(img, angle):
    # rotate, crop and return original size
    (h, w) = img.shape[:2]
    img = imutils.rotate_bound(img, angle)
    img = crop(img, *rotated_rect(w, h, angle))
    img = cv2.resize(img,(w,h),interpolation=cv2.INTER_AREA)
    return img
4
Artemi Krymski

Rotation et recadrage dans TensorFlow

J'avais personnellement besoin de cette fonction dans TensorFlow et merci pour Aaron Snoswell, j'ai pu implémenter cette fonction.

def _rotate_and_crop(image, output_height, output_width, rotation_degree, do_crop):
    """Rotate the given image with the given rotation degree and crop for the black edges if necessary
    Args:
        image: A `Tensor` representing an image of arbitrary size.
        output_height: The height of the image after preprocessing.
        output_width: The width of the image after preprocessing.
        rotation_degree: The degree of rotation on the image.
        do_crop: Do cropping if it is True.
    Returns:
        A rotated image.
    """

    # Rotate the given image with the given rotation degree
    if rotation_degree != 0:
        image = tf.contrib.image.rotate(image, math.radians(rotation_degree), interpolation='BILINEAR')

        # Center crop to ommit black noise on the edges
        if do_crop == True:
            lrr_width, lrr_height = _largest_rotated_rect(output_height, output_width, math.radians(rotation_degree))
            resized_image = tf.image.central_crop(image, float(lrr_height)/output_height)    
            image = tf.image.resize_images(resized_image, [output_height, output_width], method=tf.image.ResizeMethod.BILINEAR, align_corners=False)

    return image

def _largest_rotated_rect(w, h, angle):
    """
    Given a rectangle of size wxh that has been rotated by 'angle' (in
    radians), computes the width and height of the largest possible
    axis-aligned rectangle within the rotated rectangle.
    Original JS code by 'Andri' and Magnus Hoff from Stack Overflow
    Converted to Python by Aaron Snoswell
    Source: http://stackoverflow.com/questions/16702966/rotate-image-and-crop-out-black-borders
    """

    quadrant = int(math.floor(angle / (math.pi / 2))) & 3
    sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
    alpha = (sign_alpha % math.pi + math.pi) % math.pi

    bb_w = w * math.cos(alpha) + h * math.sin(alpha)
    bb_h = w * math.sin(alpha) + h * math.cos(alpha)

    gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)

    delta = math.pi - alpha - gamma

    length = h if (w < h) else w

    d = length * math.cos(alpha)
    a = d * math.sin(alpha) / math.sin(delta)

    y = a * math.cos(gamma)
    x = y * math.tan(gamma)

    return (
        bb_w - 2 * x,
        bb_h - 2 * y
    )

Si vous avez besoin d'une implémentation supplémentaire de l'exemple et de la visualisation dans TensorFlow, vous pouvez utiliser ce référentiel . J'espère que cela pourrait être utile à d'autres personnes.

4
ByungSoo Ko

Correction à la solution la plus privilégiée ci-dessus donnée par Coprox le 27 mai 2013: lorsque cosa = cosb infini résulte dans les deux dernières lignes. Résolvez en ajoutant "ou cosa égal cosb" dans le sélecteur if précédent.

Addition: si vous ne connaissez pas les nx et ny non tournés d'origine mais que vous avez uniquement le cadre (ou l'image) pivoté, trouvez la boîte contenant juste cela (je le fais en supprimant les blancs = les bordures monochromes) et lancez d'abord le programme à l'envers sur sa taille pour trouver nx et ny. Si l'image a été tournée dans un cadre trop petit pour être découpée sur les côtés (en forme octogonale), je trouve d'abord les extensions x et y du cadre de confinement complet. Cependant, cela ne fonctionne pas non plus pour des angles d'environ 45 degrés où le résultat devient carré au lieu de maintenir le rapport d'aspect non pivoté. Pour moi, cette routine ne fonctionne correctement que jusqu'à 30 degrés.

Encore une belle routine! Cela a résolu mon problème persistant dans l'alignement des images astronomiques.

1
Rob Rutten

Il existe un moyen facile de résoudre ce problème qui utilise un autre module appelé PIL (utile uniquement si vous acceptez de ne pas utiliser opencv)

Le code ci-dessous fait exactement la même chose et fait pivoter n'importe quelle image de telle manière que vous n'obtiendrez pas les pixels noirs

from PIL import Image

def array_to_img(x, scale=True):
    x = x.transpose(1, 2, 0) 
    if scale:
        x += max(-np.min(x), 0)
        x /= np.max(x)
        x *= 255
    if x.shape[2] == 3:
        return Image.fromarray(x.astype("uint8"), "RGB")
    else:
        return Image.fromarray(x[:,:,0].astype("uint8"), "L")



def img_to_array(img):
    x = np.asarray(img, dtype='float32')
    if len(x.shape)==3:
        # RGB: height, width, channel -> channel, height, width
        x = x.transpose(2, 0, 1)
    else:
        # grayscale: height, width -> channel, height, width
        x = x.reshape((1, x.shape[0], x.shape[1]))
    return x



if __== "__main__":
    # Calls a function to convert image to array
    image_array = img_to_array(image_name)
    # Calls the function to rotate the image by given angle
    rotated_image =  array_to_img(random_rotation(image_array, rotation_angle))

    # give the location where you want to store the image
    rotated_image_name=<location_of_the_image_>+'roarted_image.png'
    # Saves the image in the mentioned location
    rotated_image.save(rotated_image_name)
0
Neeraj Komuravalli

Inspiré par le travail étonnant de Coprox, j'ai écrit une fonction qui forme avec le code de Coprox une solution complète (afin qu'elle puisse être utilisée en copiant et collant sans aucune réflexion). La fonction rotation_max_area ci-dessous renvoie simplement une image pivotée sans contour noir.

def rotate_bound(image, angle):
    # CREDIT: https://www.pyimagesearch.com/2017/01/02/rotate-images-correctly-with-opencv-and-python/
    (h, w) = image.shape[:2]
    (cX, cY) = (w // 2, h // 2)
    M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0)
    cos = np.abs(M[0, 0])
    sin = np.abs(M[0, 1])
    nW = int((h * sin) + (w * cos))
    nH = int((h * cos) + (w * sin))
    M[0, 2] += (nW / 2) - cX
    M[1, 2] += (nH / 2) - cY
    return cv2.warpAffine(image, M, (nW, nH))


def rotate_max_area(image, angle):
    """ image: cv2 image matrix object
        angle: in degree
    """
    wr, hr = rotatedRectWithMaxArea(image.shape[1], image.shape[0],
                                    math.radians(angle))
    rotated = rotate_bound(image, angle)
    h, w, _ = rotated.shape
    y1 = h//2 - int(hr/2)
    y2 = y1 + int(hr)
    x1 = w//2 - int(wr/2)
    x2 = x1 + int(wr)
    return rotated[y1:y2, x1:x2]
0
Naofumi

solution rapide

Merci à coproc pour sa grande solution. Voici le code dans Swift

// Given a rectangle of size.width x size.height that has been rotated by 'angle' (in
// radians), computes the width and height of the largest possible
// axis-aligned rectangle (maximal area) within the rotated rectangle.
func rotatedRectWithMaxArea(size: CGSize, angle: CGFloat) -> CGSize {
    let w = size.width
    let h = size.height

    if(w <= 0 || h <= 0) {
        return CGSize.zero
    }

    let widthIsLonger = w >= h
    let (sideLong, sideShort) = widthIsLonger ? (w, h) : (w, h)

    // since the solutions for angle, -angle and 180-angle are all the same,
    // if suffices to look at the first quadrant and the absolute values of sin,cos:
    let (sinA, cosA) = (sin(angle), cos(angle))
    if(sideShort <= 2*sinA*cosA*sideLong || abs(sinA-cosA) < 1e-10) {
        // half constrained case: two crop corners touch the longer side,
        // the other two corners are on the mid-line parallel to the longer line
        let x = 0.5*sideShort
        let (wr, hr) = widthIsLonger ? (x/sinA, x/cosA) : (x/cosA, x/sinA)
        return CGSize(width: wr, height: hr)
    } else {
        // fully constrained case: crop touches all 4 sides
        let cos2A = cosA*cosA - sinA*sinA
        let (wr, hr) = ((w*cosA - h*sinA)/cos2A, (h*cosA - w*sinA)/cos2A)
        return CGSize(width: wr, height: hr)
    }
}
0
Josh Bernfeld

Une solution encore plus simple serait peut-être:

def crop_image(image, angle):
    h, w = image.shape
    tan_a = abs(np.tan(angle * np.pi / 180))
    b = int(tan_a / (1 - tan_a ** 2) * (h - w * tan_a))
    d = int(tan_a / (1 - tan_a ** 2) * (w - h * tan_a))
    return image[d:h - d, b:w - b]

Au lieu de calculer la hauteur et la largeur du rectangle pivoté comme beaucoup l'ont fait, il suffit de trouver la hauteur des triangles noirs qui se forment lors de la rotation d'une image.

0
Federico Corazza