web-dev-qa-db-fra.com

Filtrage de plusieurs éléments dans un multi-index Python Panda dataframe

J'ai le tableau suivant:

Remarque: NSRCODE et PBL_AWI sont des index

Remarque: la colonne% de la zone serait remplie mais ne l'a pas encore fait.

NSRCODE  PBL_AWI          Area           % Of Area
CM       BONS             44705.492941
         BTNN            253854.591990
         FONG             41625.590370
         FONS             16814.159680
         Lake             57124.819333
         River             1603.906642
         SONS            583958.444751
         STNN             45603.837177
         clearcut        106139.013930
         disturbed       127719.865675
         lowland         118795.578059
         upland         2701289.270193
LBH      BFNN            289207.169650
         BONS           9140084.716743
         BTNI             33713.160390
         BTNN          19748004.789040
         FONG           1687122.469691
         FONS           5169959.591270
         FTNI            317251.976160
         FTNN           6536472.869395
         Lake            258046.508310
         River            44262.807900
         SONS           4379097.677405
         burn regen      744773.210860
         clearcut         54066.756790
         disturbed       597561.471686
         lowland       12591619.141842
         upland        23843453.638117

Comment filtrer un élément dans l'index "PBL_AWI"? Par exemple, je veux garder ['Lake', 'River', 'Upland']

25
Tristan Forward

Vous pouvez get_level_values Conjointement avec le découpage booléen.

In [50]:

print df[np.in1d(df.index.get_level_values(1), ['Lake', 'River', 'Upland'])]
                          Area
NSRCODE PBL_AWI               
CM      Lake      57124.819333
        River      1603.906642
LBH     Lake     258046.508310
        River     44262.807900

La même idée peut être exprimée de différentes manières, comme df[df.index.get_level_values('PBL_AWI').isin(['Lake', 'River', 'Upland'])]

Notez que vous avez 'upland' Dans vos données au lieu de 'Upland'

49
CT Zhu

Aussi (de ici ):

def filter_by(df, constraints):
    """Filter MultiIndex by sublevels."""
    indexer = [constraints[name] if name in constraints else slice(None)
               for name in df.index.names]
    return df.loc[Tuple(indexer)] if len(df.shape) == 1 else df.loc[Tuple(indexer),]

pd.Series.filter_by = filter_by
pd.DataFrame.filter_by = filter_by

... à utiliser comme

df.filter_by({'PBL_AWI' : ['Lake', 'River', 'Upland']})

(non testé avec des panneaux et des éléments de dimension supérieure, mais je m'attends à ce que cela fonctionne)

4
Pietro Battiston