Je voudrais savoir comment obtenir la distance et le relèvement entre 2 points GPS . J'ai fait des recherches sur la formule de haversine . Quelqu'un m'a dit que je pouvais également trouver le relèvement en utilisant les mêmes données.
Tout fonctionne bien, mais le roulement ne fonctionne pas encore correctement. Le relèvement est négatif mais doit être compris entre 0 et 360 degrés . Les données configurées doivent donner le relèvement horizontal 96.02166666666666
.__ et est:
Start point: 53.32055555555556 , -1.7297222222222221
Bearing: 96.02166666666666
Distance: 2 km
Destination point: 53.31861111111111, -1.6997222222222223
Final bearing: 96.04555555555555
Voici mon nouveau code:
from math import *
Aaltitude = 2000
Oppsite = 20000
lat1 = 53.32055555555556
lat2 = 53.31861111111111
lon1 = -1.7297222222222221
lon2 = -1.6997222222222223
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * atan2(sqrt(a), sqrt(1-a))
Base = 6371 * c
Bearing =atan2(cos(lat1)*sin(lat2)-sin(lat1)*cos(lat2)*cos(lon2-lon1), sin(lon2-lon1)*cos(lat2))
Bearing = degrees(Bearing)
print ""
print ""
print "--------------------"
print "Horizontal Distance:"
print Base
print "--------------------"
print "Bearing:"
print Bearing
print "--------------------"
Base2 = Base * 1000
distance = Base * 2 + Oppsite * 2 / 2
Caltitude = Oppsite - Aaltitude
a = Oppsite/Base
b = atan(a)
c = degrees(b)
distance = distance / 1000
print "The degree of vertical angle is:"
print c
print "--------------------"
print "The distance between the Balloon GPS and the Antenna GPS is:"
print distance
print "--------------------"
Voici une version Python:
from math import radians, cos, sin, asin, sqrt
def haversine(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
# convert decimal degrees to radians
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
r = 6371 # Radius of earth in kilometers. Use 3956 for miles
return c * r
La plupart de ces réponses "arrondissent" le rayon de la terre. Si vous les comparez à d'autres calculateurs de distance (tels que la géoposition), ces fonctions seront désactivées.
Cela fonctionne bien:
from math import radians, cos, sin, asin, sqrt
def haversine(lat1, lon1, lat2, lon2):
R = 3959.87433 # this is in miles. For Earth radius in kilometers use 6372.8 km
dLat = radians(lat2 - lat1)
dLon = radians(lon2 - lon1)
lat1 = radians(lat1)
lat2 = radians(lat2)
a = sin(dLat/2)**2 + cos(lat1)*cos(lat2)*sin(dLon/2)**2
c = 2*asin(sqrt(a))
return R * c
# Usage
lon1 = -103.548851
lat1 = 32.0004311
lon2 = -103.6041946
lat2 = 33.374939
print(haversine(lat1, lon1, lat2, lon2))
Le calcul du relèvement est incorrect, vous devez permuter les entrées en atan2.
bearing = atan2(sin(long2-long1)*cos(lat2), cos(lat1)*sin(lat2)-sin(lat1)*cos(lat2)*cos(long2-long1))
bearing = degrees(bearing)
bearing = (bearing + 360) % 360
Cela vous donnera le bon roulement.
Vous pouvez essayer ce qui suit:
from haversine import haversine
haversine((45.7597, 4.8422),(48.8567, 2.3508),miles = True)
243.71209416020253
Vous pouvez résoudre le problème de roulement négatif en ajoutant 360 °. Malheureusement, cela pourrait entraîner des relèvements supérieurs à 360 ° pour les relèvements positifs.
Bearing = (Bearing + 360) % 360
à la fin de votre méthode.
Il existe également une implémentation vectorisée , qui permet d’utiliser 4 tableaux numpy au lieu de valeurs scalaires pour les coordonnées:
def distance(s_lat, s_lng, e_lat, e_lng):
# approximate radius of earth in km
R = 6373.0
s_lat = s_lat*np.pi/180.0
s_lng = np.deg2rad(s_lng)
e_lat = np.deg2rad(e_lat)
e_lng = np.deg2rad(e_lng)
d = np.sin((e_lat - s_lat)/2)**2 + np.cos(s_lat)*np.cos(e_lat) * np.sin((e_lng - s_lng)/2)**2
return 2 * R * np.arcsin(np.sqrt(d))
Consultez ce lien: https://gis.stackexchange.com/questions/84885/whats-the-difference-between-vincenty-and-great-circle-distance-calculations
cela donne en fait deux façons d’obtenir une distance. Ils sont Haversine et Vincentys. Mes recherches m'ont appris que Vincentys est relativement précis. Utilisez également l'instruction import pour effectuer l'implémentation.
Le Y dans atan2 est, par défaut, le premier paramètre. Voici la documentation . Vous devrez changer vos entrées pour obtenir le bon angle.
bearing = atan2(sin(lon2-lon1)*cos(lat2), cos(lat1)*sin(lat2)in(lat1)*cos(lat2)*cos(lon2-lon1))
bearing = degrees(bearing)
bearing = (bearing + 360) % 360
Voici deux fonctions pour calculer la distance et le relèvement, qui sont basées sur le code des messages précédents et https://Gist.github.com/jeromer/2005586 (ajouté le type de tuple pour les points géographiques au format lat, lon pour les deux fonctions pour plus de clarté). J'ai testé les deux fonctions et elles semblent fonctionner correctement.
#coding:UTF-8
from math import radians, cos, sin, asin, sqrt, atan2, degrees
def haversine(pointA, pointB):
if (type(pointA) != Tuple) or (type(pointB) != Tuple):
raise TypeError("Only tuples are supported as arguments")
lat1 = pointA[0]
lon1 = pointA[1]
lat2 = pointB[0]
lon2 = pointB[1]
# convert decimal degrees to radians
lat1, lon1, lat2, lon2 = map(radians, [lat1, lon1, lat2, lon2])
# haversine formula
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
r = 6371 # Radius of earth in kilometers. Use 3956 for miles
return c * r
def initial_bearing(pointA, pointB):
if (type(pointA) != Tuple) or (type(pointB) != Tuple):
raise TypeError("Only tuples are supported as arguments")
lat1 = radians(pointA[0])
lat2 = radians(pointB[0])
diffLong = radians(pointB[1] - pointA[1])
x = sin(diffLong) * cos(lat2)
y = cos(lat1) * sin(lat2) - (sin(lat1)
* cos(lat2) * cos(diffLong))
initial_bearing = atan2(x, y)
# Now we have the initial bearing but math.atan2 return values
# from -180° to + 180° which is not what we want for a compass bearing
# The solution is to normalize the initial bearing as shown below
initial_bearing = degrees(initial_bearing)
compass_bearing = (initial_bearing + 360) % 360
return compass_bearing
pA = (46.2038,6.1530)
pB = (46.449, 30.690)
print haversine(pA, pB)
print initial_bearing(pA, pB)
Voici une implémentation numpy vectorisée de la formule Haversine donnée par @Michael Dunn, qui donne une amélioration 10 à 50 fois supérieure aux grands vecteurs.
from numpy import radians, cos, sin, arcsin, sqrt
def haversine(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
#Convert decimal degrees to Radians:
lon1 = np.radians(lon1.values)
lat1 = np.radians(lat1.values)
lon2 = np.radians(lon2.values)
lat2 = np.radians(lat2.values)
#Implementing Haversine Formula:
dlon = np.subtract(lon2, lon1)
dlat = np.subtract(lat2, lat1)
a = np.add(np.power(np.sin(np.divide(dlat, 2)), 2),
np.multiply(np.cos(lat1),
np.multiply(np.cos(lat2),
np.power(np.sin(np.divide(dlon, 2)), 2))))
c = np.multiply(2, np.arcsin(np.sqrt(a)))
r = 6371
return c*r