J'ai vu plusieurs articles à ce sujet, mais je n'ai pas pu comprendre comment la fusion, la jointure et la concaturation feraient face à cela. Comment puis-je fusionner deux trames de données pour trouver des index correspondants?
dans:
import pandas as pd
import numpy as np
row_x1 = ['a1','b1','c1']
row_x2 = ['a2','b2','c2']
row_x3 = ['a3','b3','c3']
row_x4 = ['a4','b4','c4']
index_arrays = [np.array(['first', 'first', 'second', 'second']), np.array(['one','two','one','two'])]
df1 = pd.DataFrame([row_x1,row_x2,row_x3,row_x4], columns=list('ABC'), index=index_arrays)
print(df1)
en dehors:
A B C
first one a1 b1 c1
two a2 b2 c2
second one a3 b3 c3
two a4 b4 c4
dans:
row_y1 = ['d1','e1','f1']
row_y2 = ['d2','e2','f2']
df2 = pd.DataFrame([row_y1,row_y2], columns=list('DEF'), index=['first','second'])
print(df2)
en dehors
D E F
first d1 e1 f1
second d2 e2 f2
en d'autres termes, comment puis-je les fusionner pour atteindre df3 (comme suit)?
dans
row_x1 = ['a1','b1','c1']
row_x2 = ['a2','b2','c2']
row_x3 = ['a3','b3','c3']
row_x4 = ['a4','b4','c4']
row_y1 = ['d1','e1','f1']
row_y2 = ['d2','e2','f2']
row_z1 = row_x1 + row_y1
row_z2 = row_x2 + row_y1
row_z3 = row_x3 + row_y2
row_z4 = row_x4 + row_y2
df3 = pd.DataFrame([row_z1,row_z2,row_z3,row_z4], columns=list('ABCDEF'), index=index_arrays)
print(df3)
en dehors
A B C D E F
first one a1 b1 c1 d1 e1 f1
two a2 b2 c2 d1 e1 f1
second one a3 b3 c3 d2 e2 f2
two a4 b4 c4 d2 e2 f2
Option 1
Utilisation pd.DataFrame.reindex
+ pd.DataFrame.join
reindex
possède un paramètre level
pratique qui vous permet de développer les niveaux d'index non présents.
df1.join(df2.reindex(df1.index, level=0))
A B C D E F
first one a1 b1 c1 d1 e1 f1
two a2 b2 c2 d1 e1 f1
second one a3 b3 c3 d2 e2 f2
two a4 b4 c4 d2 e2 f2
Option 2
Vous pouvez renommer vos axes et join
fonctionnera
df1.rename_axis(['a', 'b']).join(df2.rename_axis('a'))
A B C D E F
a b
first one a1 b1 c1 d1 e1 f1
two a2 b2 c2 d1 e1 f1
second one a3 b3 c3 d2 e2 f2
two a4 b4 c4 d2 e2 f2
Vous pouvez suivre cela avec un autre rename_axis
pour obtenir les résultats souhaités
df1.rename_axis(['a', 'b']).join(df2.rename_axis('a')).rename_axis([None, None])
A B C D E F
first one a1 b1 c1 d1 e1 f1
two a2 b2 c2 d1 e1 f1
second one a3 b3 c3 d2 e2 f2
two a4 b4 c4 d2 e2 f2