J'ai une trame de données,
Out[78]:
contract month year buys adjusted_lots price
0 W Z 5 Sell -5 554.85
1 C Z 5 Sell -3 424.50
2 C Z 5 Sell -2 424.00
3 C Z 5 Sell -2 423.75
4 C Z 5 Sell -3 423.50
5 C Z 5 Sell -2 425.50
6 C Z 5 Sell -3 425.25
7 C Z 5 Sell -2 426.00
8 C Z 5 Sell -2 426.75
9 CC U 5 Buy 5 3328.00
10 SB V 5 Buy 5 11.65
11 SB V 5 Buy 5 11.64
12 SB V 5 Buy 2 11.60
J'ai besoin d'une somme de lots_ajustés, prix moyen pondéré, de prix et lots_ajustés, regroupés par toutes les autres colonnes, c'est-à-dire. regroupés par (contrat, mois, année et achats)
Une solution similaire sur R a été obtenue en suivant le code, en utilisant dplyr, mais incapable de faire de même dans les pandas.
> newdf = df %>%
select ( contract , month , year , buys , adjusted_lots , price ) %>%
group_by( contract , month , year , buys) %>%
summarise(qty = sum( adjusted_lots) , avgpx = weighted.mean(x = price , w = adjusted_lots) , comdty = "Comdty" )
> newdf
Source: local data frame [4 x 6]
contract month year comdty qty avgpx
1 C Z 5 Comdty -19 424.8289
2 CC U 5 Comdty 5 3328.0000
3 SB V 5 Comdty 12 11.6375
4 W Z 5 Comdty -5 554.8500
est-ce la même chose possible par groupby ou toute autre solution?
Pour passer plusieurs fonctions à un objet groupby, vous devez passer un dictionnaire avec les fonctions d'agrégation correspondant aux colonnes:
# Define a lambda function to compute the weighted mean:
wm = lambda x: np.average(x, weights=df.loc[x.index, "adjusted_lots"])
# Define a dictionary with the functions to apply for a given column:
f = {'adjusted_lots': ['sum'], 'price': {'weighted_mean' : wm} }
# Groupby and aggregate with your dictionary:
df.groupby(["contract", "month", "year", "buys"]).agg(f)
adjusted_lots price
sum weighted_mean
contract month year buys
C Z 5 Sell -19 424.828947
CC U 5 Buy 5 3328.000000
SB V 5 Buy 12 11.637500
W Z 5 Sell -5 554.850000
Vous pouvez en voir plus ici:
et dans une question similaire ici:
J'espère que cela t'aides
Faire une moyenne pondérée par groupe (...). Appliquer (...) peut être très lent (100 fois ce qui suit). Voir ma réponse (et d'autres) sur ce fil .
def weighted_average(df,data_col,weight_col,by_col):
df['_data_times_weight'] = df[data_col]*df[weight_col]
df['_weight_where_notnull'] = df[weight_col]*pd.notnull(df[data_col])
g = df.groupby(by_col)
result = g['_data_times_weight'].sum() / g['_weight_where_notnull'].sum()
del df['_data_times_weight'], df['_weight_where_notnull']
return result
La solution qui utilise un dict de fonctions d'agrégation sera obsolète dans une future version de pandas (version 0.22):
FutureWarning: using a dict with renaming is deprecated and will be removed in a future
version return super(DataFrameGroupBy, self).aggregate(arg, *args, **kwargs)
Utilisez un groupe pour appliquer et renvoyer une série pour renommer les colonnes comme indiqué dans: Renommer les colonnes de résultat de Pandas agrégation ("FutureWarning: l'utilisation d'un dict avec renommage est déconseillée")
def my_agg(x):
names = {'weighted_ave_price': (x['adjusted_lots'] * x['price']).sum()/x['adjusted_lots'].sum()}
return pd.Series(names, index=['weighted_ave_price'])
produit le même résultat:
>df.groupby(["contract", "month", "year", "buys"]).apply(my_agg)
weighted_ave_price
contract month year buys
C Z 5 Sell 424.828947
CC U 5 Buy 3328.000000
SB V 5 Buy 11.637500
W Z 5 Sell 554.850000