web-dev-qa-db-fra.com

Interpolation bicubique Python

J'ai développé une interpolation bicubique pour la démonstration à certains étudiants de premier cycle en utilisant Python langage de programmation.

La méthodologie est telle qu'expliquée dans wikipedia , le code fonctionne bien sauf que les résultats que j'obtiens sont légèrement différents de ceux obtenus lors de l'utilisation de la bibliothèque scipy.

Le code d'interpolation est indiqué ci-dessous dans la fonction bicubic_interpolation.

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
from scipy import interpolate
import sympy as syp
import pandas as pd
pd.options.display.max_colwidth = 200
%matplotlib inline

def bicubic_interpolation(xi, yi, zi, xnew, ynew):

    # check sorting
    if np.any(np.diff(xi) < 0) and np.any(np.diff(yi) < 0) and\
    np.any(np.diff(xnew) < 0) and np.any(np.diff(ynew) < 0):
        raise ValueError('data are not sorted')

    if zi.shape != (xi.size, yi.size):
        raise ValueError('zi is not set properly use np.meshgrid(xi, yi)')

    z = np.zeros((xnew.size, ynew.size))

    deltax = xi[1] - xi[0]
    deltay = yi[1] - yi[0] 
    for n, x in enumerate(xnew):
        for m, y in enumerate(ynew):

            if xi.min() <= x <= xi.max() and yi.min() <= y <= yi.max():

                i = np.searchsorted(xi, x) - 1
                j = np.searchsorted(yi, y) - 1

                x0  = xi[i-1]
                x1  = xi[i]
                x2  = xi[i+1]
                x3  = x1+2*deltax

                y0  = yi[j-1]
                y1  = yi[j]
                y2  = yi[j+1]
                y3  = y1+2*deltay

                px = (x-x1)/(x2-x1)
                py = (y-y1)/(y2-y1)

                f00 = zi[i-1, j-1]      #row0 col0 >> x0,y0
                f01 = zi[i-1, j]        #row0 col1 >> x1,y0
                f02 = zi[i-1, j+1]      #row0 col2 >> x2,y0

                f10 = zi[i, j-1]        #row1 col0 >> x0,y1
                f11 = p00 = zi[i, j]    #row1 col1 >> x1,y1
                f12 = p01 = zi[i, j+1]  #row1 col2 >> x2,y1

                f20 = zi[i+1,j-1]       #row2 col0 >> x0,y2
                f21 = p10 = zi[i+1,j]   #row2 col1 >> x1,y2
                f22 = p11 = zi[i+1,j+1] #row2 col2 >> x2,y2

                if 0 < i < xi.size-2 and 0 < j < yi.size-2:

                    f03 = zi[i-1, j+2]      #row0 col3 >> x3,y0

                    f13 = zi[i,j+2]         #row1 col3 >> x3,y1

                    f23 = zi[i+1,j+2]       #row2 col3 >> x3,y2

                    f30 = zi[i+2,j-1]       #row3 col0 >> x0,y3
                    f31 = zi[i+2,j]         #row3 col1 >> x1,y3
                    f32 = zi[i+2,j+1]       #row3 col2 >> x2,y3
                    f33 = zi[i+2,j+2]       #row3 col3 >> x3,y3

                Elif i<=0: 

                    f03 = f02               #row0 col3 >> x3,y0

                    f13 = f12               #row1 col3 >> x3,y1

                    f23 = f22               #row2 col3 >> x3,y2

                    f30 = zi[i+2,j-1]       #row3 col0 >> x0,y3
                    f31 = zi[i+2,j]         #row3 col1 >> x1,y3
                    f32 = zi[i+2,j+1]       #row3 col2 >> x2,y3
                    f33 = f32               #row3 col3 >> x3,y3             

                Elif j<=0:

                    f03 = zi[i-1, j+2]      #row0 col3 >> x3,y0

                    f13 = zi[i,j+2]         #row1 col3 >> x3,y1

                    f23 = zi[i+1,j+2]       #row2 col3 >> x3,y2

                    f30 = f20               #row3 col0 >> x0,y3
                    f31 = f21               #row3 col1 >> x1,y3
                    f32 = f22               #row3 col2 >> x2,y3
                    f33 = f23               #row3 col3 >> x3,y3


                Elif i == xi.size-2 or j == yi.size-2:

                    f03 = f02               #row0 col3 >> x3,y0

                    f13 = f12               #row1 col3 >> x3,y1

                    f23 = f22               #row2 col3 >> x3,y2

                    f30 = f20               #row3 col0 >> x0,y3
                    f31 = f21               #row3 col1 >> x1,y3
                    f32 = f22               #row3 col2 >> x2,y3
                    f33 = f23               #row3 col3 >> x3,y3

                px00 = (f12 - f10)/2*deltax
                px01 = (f22 - f20)/2*deltax 
                px10 = (f13 - f11)/2*deltax 
                px11 = (f23 - f21)/2*deltax

                py00 = (f21 - f01)/2*deltay
                py01 = (f22 - f02)/2*deltay
                py10 = (f31 - f11)/2*deltay
                py11 = (f32 - f12)/2*deltay

                pxy00 = ((f22-f20) - (f02-f00))/4*deltax*deltay
                pxy01 = ((f32-f30) - (f12-f10))/4*deltax*deltay
                pxy10 = ((f23-f21) - (f03-f01))/4*deltax*deltay
                pxy11 = ((f33-f31) - (f13-f11))/4*deltax*deltay


                f = np.array([p00,  p01,  p10, p11,
                              px00,  px01,  px10, px11,
                              py00, py01,  py10,  py11,
                              pxy00,  pxy01, pxy10, pxy11])

                a = A@f

                a = a.reshape(4,4).transpose()
                z[n,m] = np.array([1, px, px**2, px**3]) @ a @ np.array([1, py, py**2, py**3])

    return z

Dans la fonction bicubic_interpolation les entrées sont xi = ancienne x plage de données, yi = ancienne plage y, zi = anciennes valeurs aux points de la grille (x, y), xnew et ynew sont les nouvelles plages de données horizontales. Toutes les entrées sont des tableaux numpy 1D sauf zi qui est un tableau numpy 2D.

Les données sur lesquelles je teste la fonction sont présentées ci-dessous. Je compare également les résultats avec scipy et le vrai modèle (fonction f).

def f(x,y):
    return np.sin(np.sqrt(x ** 2 + y ** 2))

x = np.linspace(-6, 6, 11)
y = np.linspace(-6, 6, 11)

xx, yy = np.meshgrid(x, y)

z = f(xx, yy)

x_new = np.linspace(-6, 6, 100)
y_new = np.linspace(-6, 6, 100)

xx_new, yy_new = np.meshgrid(x_new, y_new)

z_new = bicubic_interpolation(x, y, z, x_new, y_new)

z_true = f(xx_new, yy_new) 

f_scipy = interpolate.interp2d(x, y, z, kind='cubic')

z_scipy = f_scipy(x_new, y_new)

fig, ax = plt.subplots(2, 2, sharey=True, figsize=(16,12))

img0 = ax[0, 0].scatter(xx, yy, c=z, s=100)
ax[0, 0].set_title('original points')
fig.colorbar(img0, ax=ax[0, 0], orientation='vertical', shrink=1, pad=0.01)

img1 = ax[0, 1].imshow(z_new, vmin=z_new.min(), vmax=z_new.max(), Origin='lower',
           extent=[x_new.min(), x_new.max(), y_new.max(), y_new.min()])
ax[0, 1].set_title('bicubic our code')
fig.colorbar(img1, ax=ax[0, 1], orientation='vertical', shrink=1, pad=0.01)


img2 = ax[1, 0].imshow(z_scipy, vmin=z_scipy.min(), vmax=z_scipy.max(), Origin='lower',
           extent=[x_new.min(), x_new.max(), y_new.max(), y_new.min()])
ax[1, 0].set_title('bicubic scipy')
fig.colorbar(img2, ax=ax[1, 0], orientation='vertical', shrink=1, pad=0.01)


img3 = ax[1, 1].imshow(z_true, vmin=z_true.min(), vmax=z_true.max(), Origin='lower',
           extent=[x_new.min(), x_new.max(), y_new.max(), y_new.min()])
ax[1, 1].set_title('true model')
fig.colorbar(img3, ax=ax[1, 1], orientation='vertical', shrink=1, pad=0.01)

plt.subplots_adjust(wspace=0.05, hspace=0.15)

plt.show()

Les résultats sont montrés plus bas:

enter image description here

La matrice A (à l'intérieur de la fonction bicubic_interpolation) est comme expliqué dans le site Wikipedia et peut simplement être obtenu en utilisant le code suivant:

x = syp.Symbol('x')
y = syp.Symbol('y')
a00, a01, a02, a03, a10, a11, a12, a13 = syp.symbols('a00 a01 a02 a03 a10 a11 a12 a13')
a20, a21, a22, a23, a30, a31, a32, a33 = syp.symbols('a20 a21 a22 a23 a30 a31 a32 a33')

p = a00 + a01*y + a02*y**2 + a03*y**3\
+ a10*x + a11*x*y + a12*x*y**2 + a13*x*y**3\
+ a20*x**2 + a21*x**2*y + a22*x**2*y**2 + a23*x**2*y**3\
+ a30*x**3 + a31*x**3*y + a32*x**3*y**2 + a33*x**3*y**3 

px = syp.diff(p, x)
py = syp.diff(p, y)
pxy = syp.diff(p, x, y)

df = pd.DataFrame(columns=['function', 'evaluation'])

for i in range(2):
    for j in range(2):
        function = 'p({}, {})'.format(j,i)
        df.loc[len(df)] = [function, p.subs({x:j, y:i})]
for i in range(2):
    for j in range(2):
        function = 'px({}, {})'.format(j,i)
        df.loc[len(df)] = [function, px.subs({x:j, y:i})]
for i in range(2):
    for j in range(2):
        function = 'py({}, {})'.format(j,i)
        df.loc[len(df)] = [function, py.subs({x:j, y:i})]
for i in range(2):
    for j in range(2):
        function = 'pxy({}, {})'.format(j,i)
        df.loc[len(df)] = [function, pxy.subs({x:j, y:i})]

eqns = df['evaluation'].tolist()
symbols = [a00,a01,a02,a03,a10,a11,a12,a13,a20,a21,a22,a23,a30,a31,a32,a33]
A = syp.linear_eq_to_matrix(eqns, *symbols)[0]
A = np.array(A.inv()).astype(np.float64)

print(df)

print(A) 

enter image description here

enter image description here

Je voudrais savoir où est le problème avec le bicubic_interpolation fonction et pourquoi il est légèrement différent du résultat obtenu par scipy? Toute aide est grandement appréciée!

7
Khalil Al Hooti

Je ne sais pas pourquoi la mise en œuvre de Wikipedia ne fonctionne pas comme prévu. Probablement, la raison en est que ces valeurs peuvent être approximées d'une manière différente de ce qui est expliqué dans leur site.

px00 = (f12 - f10)/2*deltax
px01 = (f22 - f20)/2*deltax 
px10 = (f13 - f11)/2*deltax 
px11 = (f23 - f21)/2*deltax

py00 = (f21 - f01)/2*deltay
py01 = (f22 - f02)/2*deltay
py10 = (f31 - f11)/2*deltay
py11 = (f32 - f12)/2*deltay

pxy00 = ((f22-f20) - (f02-f00))/4*deltax*deltay
pxy01 = ((f32-f30) - (f12-f10))/4*deltax*deltay
pxy10 = ((f23-f21) - (f03-f01))/4*deltax*deltay
pxy11 = ((f33-f31) - (f13-f11))/4*deltax*deltay

Cependant, j'ai trouvé ce document qui a une implémentation différente et il est bien expliqué et plus facile à comprendre que Wikipedia. Le résultat que j'obtiens en utilisant cette implémentation est assez similaire à celui obtenu par SciPy.

def bicubic_interpolation2(xi, yi, zi, xnew, ynew):

    # check sorting
    if np.any(np.diff(xi) < 0) and np.any(np.diff(yi) < 0) and\
    np.any(np.diff(xnew) < 0) and np.any(np.diff(ynew) < 0):
        raise ValueError('data are not sorted')

    if zi.shape != (xi.size, yi.size):
        raise ValueError('zi is not set properly use np.meshgrid(xi, yi)')

    z = np.zeros((xnew.size, ynew.size))

    deltax = xi[1] - xi[0]
    deltay = yi[1] - yi[0] 
    for n, x in enumerate(xnew):
        for m, y in enumerate(ynew):

            if xi.min() <= x <= xi.max() and yi.min() <= y <= yi.max():

                i = np.searchsorted(xi, x) - 1
                j = np.searchsorted(yi, y) - 1

                x1  = xi[i]
                x2  = xi[i+1]

                y1  = yi[j]
                y2  = yi[j+1]

                px = (x-x1)/(x2-x1)
                py = (y-y1)/(y2-y1)

                f00 = zi[i-1, j-1]      #row0 col0 >> x0,y0
                f01 = zi[i-1, j]        #row0 col1 >> x1,y0
                f02 = zi[i-1, j+1]      #row0 col2 >> x2,y0

                f10 = zi[i, j-1]        #row1 col0 >> x0,y1
                f11 = p00 = zi[i, j]    #row1 col1 >> x1,y1
                f12 = p01 = zi[i, j+1]  #row1 col2 >> x2,y1

                f20 = zi[i+1,j-1]       #row2 col0 >> x0,y2
                f21 = p10 = zi[i+1,j]   #row2 col1 >> x1,y2
                f22 = p11 = zi[i+1,j+1] #row2 col2 >> x2,y2

                if 0 < i < xi.size-2 and 0 < j < yi.size-2:

                    f03 = zi[i-1, j+2]      #row0 col3 >> x3,y0

                    f13 = zi[i,j+2]         #row1 col3 >> x3,y1

                    f23 = zi[i+1,j+2]       #row2 col3 >> x3,y2

                    f30 = zi[i+2,j-1]       #row3 col0 >> x0,y3
                    f31 = zi[i+2,j]         #row3 col1 >> x1,y3
                    f32 = zi[i+2,j+1]       #row3 col2 >> x2,y3
                    f33 = zi[i+2,j+2]       #row3 col3 >> x3,y3

                Elif i<=0: 

                    f03 = f02               #row0 col3 >> x3,y0

                    f13 = f12               #row1 col3 >> x3,y1

                    f23 = f22               #row2 col3 >> x3,y2

                    f30 = zi[i+2,j-1]       #row3 col0 >> x0,y3
                    f31 = zi[i+2,j]         #row3 col1 >> x1,y3
                    f32 = zi[i+2,j+1]       #row3 col2 >> x2,y3
                    f33 = f32               #row3 col3 >> x3,y3             

                Elif j<=0:

                    f03 = zi[i-1, j+2]      #row0 col3 >> x3,y0

                    f13 = zi[i,j+2]         #row1 col3 >> x3,y1

                    f23 = zi[i+1,j+2]       #row2 col3 >> x3,y2

                    f30 = f20               #row3 col0 >> x0,y3
                    f31 = f21               #row3 col1 >> x1,y3
                    f32 = f22               #row3 col2 >> x2,y3
                    f33 = f23               #row3 col3 >> x3,y3


                Elif i == xi.size-2 or j == yi.size-2:

                    f03 = f02               #row0 col3 >> x3,y0

                    f13 = f12               #row1 col3 >> x3,y1

                    f23 = f22               #row2 col3 >> x3,y2

                    f30 = f20               #row3 col0 >> x0,y3
                    f31 = f21               #row3 col1 >> x1,y3
                    f32 = f22               #row3 col2 >> x2,y3
                    f33 = f23               #row3 col3 >> x3,y3

                Z = np.array([f00, f01, f02, f03,
                             f10, f11, f12, f13,
                             f20, f21, f22, f23,
                             f30, f31, f32, f33]).reshape(4,4).transpose()

                X = np.tile(np.array([-1, 0, 1, 2]), (4,1))
                X[0,:] = X[0,:]**3
                X[1,:] = X[1,:]**2
                X[-1,:] = 1

                Cr = [email protected](X)
                R = [email protected]([px**3, px**2, px, 1])

                Y = np.tile(np.array([-1, 0, 1, 2]), (4,1)).transpose()
                Y[:,0] = Y[:,0]**3
                Y[:,1] = Y[:,1]**2
                Y[:,-1] = 1

                Cc = np.linalg.inv(Y)@R

                z[n,m]=([email protected]([py**3, py**2, py, 1]))


    return z

def f(x,y):
    return np.sin(np.sqrt(x ** 2 + y ** 2))

x = np.linspace(-6, 6, 11)
y = np.linspace(-6, 6, 11)

xx, yy = np.meshgrid(x, y)

z = f(xx, yy)

x_new = np.linspace(-6, 6, 100)
y_new = np.linspace(-6, 6, 100)

xx_new, yy_new = np.meshgrid(x_new, y_new)

z_new = bicubic_interpolation2(x, y, z, x_new, y_new)

z_true = f(xx_new, yy_new) 

f_scipy = interpolate.interp2d(x, y, z, kind='cubic')

z_scipy = f_scipy(x_new, y_new)

fig, ax = plt.subplots(2, 2, sharey=True, figsize=(16,12))

img0 = ax[0, 0].scatter(xx, yy, c=z, s=100)
ax[0, 0].set_title('original points')
fig.colorbar(img0, ax=ax[0, 0], orientation='vertical', shrink=1, pad=0.01)

img1 = ax[0, 1].imshow(z_new, vmin=z_new.min(), vmax=z_new.max(), Origin='lower',
           extent=[x_new.min(), x_new.max(), y_new.max(), y_new.min()])
ax[0, 1].set_title('bicubic our code')
fig.colorbar(img1, ax=ax[0, 1], orientation='vertical', shrink=1, pad=0.01)


img2 = ax[1, 0].imshow(z_scipy, vmin=z_scipy.min(), vmax=z_scipy.max(), Origin='lower',
           extent=[x_new.min(), x_new.max(), y_new.max(), y_new.min()])
ax[1, 0].set_title('bicubic scipy')
fig.colorbar(img2, ax=ax[1, 0], orientation='vertical', shrink=1, pad=0.01)


img3 = ax[1, 1].imshow(z_true, vmin=z_true.min(), vmax=z_true.max(), Origin='lower',
           extent=[x_new.min(), x_new.max(), y_new.max(), y_new.min()])
ax[1, 1].set_title('true model')
fig.colorbar(img3, ax=ax[1, 1], orientation='vertical', shrink=1, pad=0.01)

plt.subplots_adjust(wspace=0.05, hspace=0.15)

plt.show()

enter image description here

fig, ax = plt.subplots(1, 2, sharey=True, figsize=(10, 6))

ax[0].plot(xx[0,:], z[5,:], 'or', label='original')
ax[0].plot(xx_new[0,:], z_true[int(100/10*5),:], label='true')
ax[0].plot(xx_new[0,:], z_new[int(100/10*5), :], label='our interpolation')

ax[1].plot(xx[0,:], z[5,:], 'or', label='original')
ax[1].plot(xx_new[0,:], z_true[int(100/10*5),:], label='true')
ax[1].plot(xx_new[0,:], z_scipy[int(100/10*5), :], label='scipy interpolation')


for axes in ax:
    axes.legend()
    axes.grid()


plt.show()

enter image description here

7
Khalil Al Hooti

Pour l'avenir, je pense que le problème est que l'algorithme détaillé sur Wikipédia est pour l'interpolation bicubique sur le carré de l'unité. Si au contraire vous interpolez sur une grille rectiligne, votre vecteur x doit être légèrement modifié. Voir la section 'Extension aux grilles rectilignes', désormais incluse sur la page Wikipedia. https://en.wikipedia.org/wiki/Bicubic_interpolation#Extension_to_rectilinear_grids

0
Max Gains