Je suis nouveau dans l'apprentissage en profondeur et Keras et l'une des améliorations que j'essaie d'apporter à mon processus de formation de modèle est de faire usage de keras.callbacks.EarlyStopping
fonction de rappel.
Sur la base des résultats de la formation de mon modèle, semble-t-il raisonnable d'utiliser les paramètres suivants pour EarlyStopping
?
EarlyStopping(monitor='val_loss', min_delta=0.0001, patience=5, verbose=0, mode='auto')
Aussi, pourquoi semble-t-il être arrêté plus tôt qu'il ne le devrait s'il devait attendre 5 époques consécutives où la différence de val_loss
est inférieur à un min_delta
de 0,0001?
Sortie lors de la formation du modèle LSTM (sans EarlyStop)
Exécute les 100 époques
Epoch 1/100
10200/10200 [==============================] - 133s 12ms/step - loss: 1.1236 - val_loss: 0.6431
Epoch 2/100
10200/10200 [==============================] - 141s 13ms/step - loss: 0.2783 - val_loss: 0.0301
Epoch 3/100
10200/10200 [==============================] - 143s 13ms/step - loss: 0.1131 - val_loss: 0.1716
Epoch 4/100
10200/10200 [==============================] - 145s 13ms/step - loss: 0.0586 - val_loss: 0.3671
Epoch 5/100
10200/10200 [==============================] - 146s 13ms/step - loss: 0.0785 - val_loss: 0.0038
Epoch 6/100
10200/10200 [==============================] - 146s 13ms/step - loss: 0.0549 - val_loss: 0.0041
Epoch 7/100
10200/10200 [==============================] - 147s 13ms/step - loss: 4.7482e-04 - val_loss: 8.9437e-05
Epoch 8/100
10200/10200 [==============================] - 149s 14ms/step - loss: 1.5181e-05 - val_loss: 4.7367e-06
Epoch 9/100
10200/10200 [==============================] - 149s 14ms/step - loss: 9.1632e-07 - val_loss: 3.6576e-07
Epoch 10/100
10200/10200 [==============================] - 149s 14ms/step - loss: 1.4117e-07 - val_loss: 1.6058e-07
Epoch 11/100
10200/10200 [==============================] - 152s 14ms/step - loss: 1.2024e-07 - val_loss: 1.2804e-07
Epoch 12/100
10200/10200 [==============================] - 150s 14ms/step - loss: 0.0151 - val_loss: 0.4181
Epoch 13/100
10200/10200 [==============================] - 148s 14ms/step - loss: 0.0701 - val_loss: 0.0057
Epoch 14/100
10200/10200 [==============================] - 148s 14ms/step - loss: 0.0332 - val_loss: 5.0014e-04
Epoch 15/100
10200/10200 [==============================] - 147s 14ms/step - loss: 0.0367 - val_loss: 0.0020
Epoch 16/100
10200/10200 [==============================] - 151s 14ms/step - loss: 0.0040 - val_loss: 0.0739
Epoch 17/100
10200/10200 [==============================] - 148s 14ms/step - loss: 0.0282 - val_loss: 6.4996e-05
Epoch 18/100
10200/10200 [==============================] - 147s 13ms/step - loss: 0.0346 - val_loss: 1.6545e-04
Epoch 19/100
10200/10200 [==============================] - 147s 14ms/step - loss: 4.6678e-05 - val_loss: 6.8101e-06
Epoch 20/100
10200/10200 [==============================] - 148s 14ms/step - loss: 1.7270e-06 - val_loss: 6.7108e-07
Epoch 21/100
10200/10200 [==============================] - 147s 14ms/step - loss: 2.4334e-07 - val_loss: 1.5736e-07
Epoch 22/100
10200/10200 [==============================] - 147s 14ms/step - loss: 0.0416 - val_loss: 0.0547
Epoch 23/100
10200/10200 [==============================] - 148s 14ms/step - loss: 0.0413 - val_loss: 0.0145
Epoch 24/100
10200/10200 [==============================] - 148s 14ms/step - loss: 0.0045 - val_loss: 1.1096e-04
Epoch 25/100
10200/10200 [==============================] - 149s 14ms/step - loss: 0.0218 - val_loss: 0.0083
Epoch 26/100
10200/10200 [==============================] - 148s 14ms/step - loss: 0.0029 - val_loss: 5.0954e-05
Epoch 27/100
10200/10200 [==============================] - 148s 14ms/step - loss: 0.0316 - val_loss: 0.0035
Epoch 28/100
10200/10200 [==============================] - 148s 14ms/step - loss: 0.0032 - val_loss: 0.2343
Epoch 29/100
10200/10200 [==============================] - 149s 14ms/step - loss: 0.0299 - val_loss: 0.0021
Epoch 30/100
10200/10200 [==============================] - 150s 14ms/step - loss: 0.0171 - val_loss: 9.3622e-04
Epoch 31/100
10200/10200 [==============================] - 149s 14ms/step - loss: 0.0167 - val_loss: 0.0023
Epoch 32/100
10200/10200 [==============================] - 148s 14ms/step - loss: 7.3654e-04 - val_loss: 4.1998e-05
Epoch 33/100
10200/10200 [==============================] - 149s 14ms/step - loss: 7.3300e-06 - val_loss: 1.9043e-06
Epoch 34/100
10200/10200 [==============================] - 148s 14ms/step - loss: 6.6648e-07 - val_loss: 2.3814e-07
Epoch 35/100
10200/10200 [==============================] - 147s 14ms/step - loss: 1.5611e-07 - val_loss: 1.3155e-07
Epoch 36/100
10200/10200 [==============================] - 149s 14ms/step - loss: 1.2159e-07 - val_loss: 1.2398e-07
Epoch 37/100
10200/10200 [==============================] - 149s 14ms/step - loss: 1.1940e-07 - val_loss: 1.1977e-07
Epoch 38/100
10200/10200 [==============================] - 150s 14ms/step - loss: 1.1939e-07 - val_loss: 1.1935e-07
Epoch 39/100
10200/10200 [==============================] - 149s 14ms/step - loss: 1.1921e-07 - val_loss: 1.1935e-07
Epoch 40/100
10200/10200 [==============================] - 149s 14ms/step - loss: 1.1921e-07 - val_loss: 1.1935e-07
Epoch 41/100
10200/10200 [==============================] - 150s 14ms/step - loss: 1.1921e-07 - val_loss: 1.1921e-07
Epoch 42/100
10200/10200 [==============================] - 149s 14ms/step - loss: 1.1921e-07 - val_loss: 1.1921e-07
Epoch 43/100
10200/10200 [==============================] - 149s 14ms/step - loss: 1.1921e-07 - val_loss: 1.1921e-07
Epoch 44/100
10200/10200 [==============================] - 149s 14ms/step - loss: 1.1921e-07 - val_loss: 1.1921e-07
Epoch 45/100
10200/10200 [==============================] - 149s 14ms/step - loss: 1.1921e-07 - val_loss: 1.1921e-07
Epoch 46/100
10200/10200 [==============================] - 151s 14ms/step - loss: 1.1921e-07 - val_loss: 1.1921e-07
Epoch 47/100
10200/10200 [==============================] - 151s 14ms/step - loss: 1.1921e-07 - val_loss: 1.1921e-07
Epoch 48/100
10200/10200 [==============================] - 151s 14ms/step - loss: 1.1921e-07 - val_loss: 1.1921e-07
Sortie avec EarlyStop
Arrête (trop tôt?) après 11 époques
10200/10200 [==============================] - 134s 12ms/step - loss: 1.2733 - val_loss: 0.9022
Epoch 2/100
10200/10200 [==============================] - 144s 13ms/step - loss: 0.5429 - val_loss: 0.4093
Epoch 3/100
10200/10200 [==============================] - 144s 13ms/step - loss: 0.1644 - val_loss: 0.0552
Epoch 4/100
10200/10200 [==============================] - 144s 13ms/step - loss: 0.0263 - val_loss: 0.9872
Epoch 5/100
10200/10200 [==============================] - 145s 13ms/step - loss: 0.1297 - val_loss: 0.1175
Epoch 6/100
10200/10200 [==============================] - 146s 13ms/step - loss: 0.0287 - val_loss: 0.0136
Epoch 7/100
10200/10200 [==============================] - 145s 13ms/step - loss: 0.0718 - val_loss: 0.0270
Epoch 8/100
10200/10200 [==============================] - 145s 13ms/step - loss: 0.0272 - val_loss: 0.0530
Epoch 9/100
10200/10200 [==============================] - 150s 14ms/step - loss: 3.3879e-04 - val_loss: 0.0575
Epoch 10/100
10200/10200 [==============================] - 146s 13ms/step - loss: 1.6789e-05 - val_loss: 0.0766
Epoch 11/100
10200/10200 [==============================] - 149s 14ms/step - loss: 1.4124e-06 - val_loss: 0.0981
Training stops early here.
EarlyStopping(monitor='val_loss', min_delta=0, patience=5, verbose=0, mode='min')
Réglage essayé min_delta
à 0. Pourquoi s'arrête-t-il alors que val_loss
augmenté de 0,0011 à 0,1045?
10200/10200 [==============================] - 140s 13ms/step - loss: 1.1938 - val_loss: 0.5941
Epoch 2/100
10200/10200 [==============================] - 150s 14ms/step - loss: 0.3307 - val_loss: 0.0989
Epoch 3/100
10200/10200 [==============================] - 151s 14ms/step - loss: 0.0946 - val_loss: 0.0213
Epoch 4/100
10200/10200 [==============================] - 149s 14ms/step - loss: 0.0521 - val_loss: 0.0011
Epoch 5/100
10200/10200 [==============================] - 150s 14ms/step - loss: 0.0793 - val_loss: 0.0313
Epoch 6/100
10200/10200 [==============================] - 154s 14ms/step - loss: 0.0367 - val_loss: 0.0369
Epoch 7/100
10200/10200 [==============================] - 154s 14ms/step - loss: 0.0323 - val_loss: 0.0014
Epoch 8/100
10200/10200 [==============================] - 153s 14ms/step - loss: 0.0408 - val_loss: 0.0011
Epoch 9/100
10200/10200 [==============================] - 154s 14ms/step - loss: 0.0379 - val_loss: 0.1045
Training stops early here.
Le rôle de deux paramètres ressort clairement des keras documentation .
min_delta: variation minimale de la quantité surveillée pour être considérée comme une amélioration, c'est-à-dire une variation absolue inférieure à min_delta, ne comptera comme aucune amélioration.
patience: nombre d'époques sans amélioration après quoi l'entraînement sera arrêté.
En fait, il n'y a pas de valeur standard pour ces paramètres. Vous devez analyser les participants (ensemble de données, environnement, type de modèle) du processus de formation pour décider de leurs valeurs.
(1). patience
patience
. Et vice-versa pour un ensemble de données correct et clair.checkpoint files
après un nombre spécifique d'époques avec une valeur faible de patience
. Et ensuite, utilisez des points de contrôle pour continuer à vous améliorer au besoin. Analysez de manière similaire pour d'autres types de modèles.patience
. Et peut essayer une plus grande valeur avec le GPU.(2). min_delta
0
fonctionne assez bien dans de nombreux cas.Vos paramètres sont valides premier choix.
Cependant, comme l'a souligné Akash, cela dépend de l'ensemble de données et de la façon dont vous divisez vos données, par exemple votre schéma de validation croisée. Vous souhaiterez peut-être d'abord observer le comportement de votre erreur de validation pour votre modèle, puis choisir ces paramètres en conséquence.
En ce qui concerne min_delta: J'ai trouvé que 0 ou un choix de << 1 comme le vôtre fonctionne très bien souvent. Encore une fois, regardez à quel point votre erreur change en premier.
Concernant patience: si vous le réglez sur n, vous obtenez bien le modèle n époques après le meilleur modèle. Les choix courants se situent entre 0 et 10, mais encore une fois, cela dépendra de votre ensemble de données et en particulier de la variabilité au sein de l'ensemble de données.
Enfin, EarlyStopping se comporte correctement dans l'exemple que vous avez donné. L'optimum qui a finalement déclenché l'arrêt précoce se trouve à l'époque 4: val_loss: 0,0011. Après cela, la formation trouve 5 pertes de validation supplémentaires qui se situent toutes au-dessus ou sont égales à cet optimum et termine finalement 5 époques plus tard.