J'utilise l'encodeur d'étiquettes pour convertir les données catégoriques en valeurs numériques.
Comment LabelEncoder gère-t-il les valeurs manquantes?
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import numpy as np
a = pd.DataFrame(['A','B','C',np.nan,'D','A'])
le = LabelEncoder()
le.fit_transform(a)
Sortie:
array([1, 2, 3, 0, 4, 1])
Pour l'exemple ci-dessus, le codeur d'étiquette a modifié les valeurs NaN en une catégorie. Comment saurais-je quelle catégorie représente les valeurs manquantes?
N'utilisez pas LabelEncoder
avec les valeurs manquantes. Je ne sais pas quelle version de scikit-learn
vous utilisez, mais dans 0.17.1, votre code déclenche TypeError: unorderable types: str() > float()
.
Comme vous pouvez le voir dans le code source il utilise numpy.unique
par rapport aux données à coder, ce qui soulève TypeError
si des valeurs manquantes sont trouvées. Si vous voulez encoder des valeurs manquantes, commencez par changer son type en chaîne:
a[pd.isnull(a)] = 'NaN'
Bonjour un petit bidouillage informatique que j'ai fait pour mon propre travail:
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import numpy as np
a = pd.DataFrame(['A','B','C',np.nan,'D','A'])
le = LabelEncoder()
### fit with the desired col, col in position 0 for this example
fit_by = pd.Series([i for i in a.iloc[:,0].unique() if type(i) == str])
le.fit(fit_by)
### Set transformed col leaving np.NaN as they are
a["transformed"] = fit_by.apply(lambda x: le.transform([x])[0] if type(x) == str else x)
Vous pouvez renseigner les na par des valeurs, puis changer le type de colonne dataframe en chaîne pour que tout fonctionne correctement.
from sklearn.preprocessing import LabelEncoder
import pandas as pd
import numpy as np
a = pd.DataFrame(['A','B','C',np.nan,'D','A'])
a.fillna(99)
le = LabelEncoder()
le.fit_transform(a.astype(str))
C'est ma solution car je n'étais pas satisfaite des solutions présentées ici. J'avais besoin d'un LabelEncoder qui conserve mes valeurs manquantes sous la forme 'NaN' pour pouvoir utiliser ensuite un Imputer. J'ai donc écrit ma propre classe LabelEncoder. Cela fonctionne avec DataFrames.
from sklearn.base import BaseEstimator
from sklearn.base import TransformerMixin
from sklearn.preprocessing import LabelEncoder
class LabelEncoderByCol(BaseEstimator, TransformerMixin):
def __init__(self,col):
#List of column names in the DataFrame that should be encoded
self.col = col
#Dictionary storing a LabelEncoder for each column
self.le_dic = {}
for el in self.col:
self.le_dic[el] = LabelEncoder()
def fit(self,x,y=None):
#Fill missing values with the string 'NaN'
x[self.col] = x[self.col].fillna('NaN')
for el in self.col:
#Only use the values that are not 'NaN' to fit the Encoder
a = x[el][x[el]!='NaN']
self.le_dic[el].fit(a)
return self
def transform(self,x,y=None):
#Fill missing values with the string 'NaN'
x[self.col] = x[self.col].fillna('NaN')
for el in self.col:
#Only use the values that are not 'NaN' to fit the Encoder
a = x[el][x[el]!='NaN']
#Store an ndarray of the current column
b = x[el].get_values()
#Replace the elements in the ndarray that are not 'NaN'
#using the transformer
b[b!='NaN'] = self.le_dic[el].transform(a)
#Overwrite the column in the DataFrame
x[el]=b
#return the transformed DataFrame
return x
Vous pouvez entrer un DataFrame, pas seulement une série à 1 dim. avec col, vous pouvez choisir les colonnes à encoder.
Je voudrais ici quelques commentaires.
vous pouvez également utiliser un masque pour remplacer le bloc de données d'origine après l'étiquetage
df = pd.DataFrame({'A': ['x', np.NaN, 'z'], 'B': [1, 6, 9], 'C': [2, 1, np.NaN]})
A B C
0 x 1 2.0
1 NaN 6 1.0
2 z 9 NaN
dfTmp = df
mask = df_1.isnull()
A B C
0 False False False
1 True False False
2 False False True
df = df.astype(str).apply(LabelEncoder().fit_transform)
df.where(~mask, original)
A B C
0 1.0 0 1.0
1 NaN 1 0.0
2 2.0 2 NaN
J'ai rencontré le même problème mais rien de ce qui précède n'a fonctionné pour moi. J'ai donc ajouté une nouvelle ligne aux données d'entraînement composée uniquement de "nan".
Adresses de codeur suivantes Aucune valeur dans chaque catégorie.
class MultiColumnLabelEncoder:
def __init__(self):
self.columns = None
self.led = defaultdict(preprocessing.LabelEncoder)
def fit(self, X):
self.columns = X.columns
for col in self.columns:
cat = X[col].unique()
cat = [x if x is not None else "None" for x in cat]
self.led[col].fit(cat)
return self
def fit_transform(self, X):
if self.columns is None:
self.fit(X)
return self.transform(X)
def transform(self, X):
return X.apply(lambda x: self.led[x.name].transform(x.apply(lambda e: e if e is not None else "None")))
def inverse_transform(self, X):
return X.apply(lambda x: self.led[x.name].inverse_transform(x))
Exemple d'utilisation
df = pd.DataFrame({
'pets': ['cat', 'dog', 'cat', 'monkey', 'dog', 'dog'],
'owner': ['Champ', 'Ron', 'Brick', None, 'Veronica', 'Ron'],
'location': ['San_Diego', 'New_York', 'New_York', 'San_Diego', 'San_Diego',
None]
})
print(df)
location owner pets
0 San_Diego Champ cat
1 New_York Ron dog
2 New_York Brick cat
3 San_Diego None monkey
4 San_Diego Veronica dog
5 None Ron dog
le = MultiColumnLabelEncoder()
le.fit(df)
transformed = le.transform(df)
print(transformed)
location owner pets
0 2 1 0
1 0 3 1
2 0 0 0
3 2 2 2
4 2 4 1
5 1 3 1
inverted = le.inverse_transform(transformed)
print(inverted)
location owner pets
0 San_Diego Champ cat
1 New_York Ron dog
2 New_York Brick cat
3 San_Diego None monkey
4 San_Diego Veronica dog
5 None Ron dog
Un moyen facile est-ce
C'est un exemple de Titanic
LABEL_COL = ["Sex", "Embarked"]
def label(df):
_df = df.copy()
le = LabelEncoder()
for col in LABEL_COL:
# Not NaN index
idx = ~_df[col].isna()
_df.loc[idx, col] \
= le.fit(_df.loc[idx, col]).transform(_df.loc[idx, col])
return _df
Voici comment je l'ai fait:
import pandas as pd
from sklearn.preprocessing import LabelEncoder
UNKNOWN_TOKEN = '<unknown>'
a = pd.Series(['A','B','C', 'D','A'], dtype=str).unique().tolist()
a.append(UNKNOWN_TOKEN)
le = LabelEncoder()
le.fit_transform(a)
embedding_map = dict(Zip(le.classes_, le.transform(le.classes_)))
et lors de l'application à de nouvelles données de test:
test_df = test_df.apply(lambda x: x if x in embedding_map else UNKNOWN_TOKEN)
le.transform(test_df)