En faisant:
import pandas
x = pandas.read_csv('data.csv', parse_dates=True, index_col='DateTime',
names=['DateTime', 'X'], header=None, sep=';')
avec ce fichier data.csv
:
1449054136.83;15.31
1449054137.43;16.19
1449054138.04;19.22
1449054138.65;15.12
1449054139.25;13.12
(la 1ère colonne est un horodatage UNIX, c'est-à-dire que les secondes se sont écoulées depuis le 1/1/1970), j'obtiens cette erreur lors du rééchantillonnage des données toutes les 15 secondes avec x.resample('15S')
:
TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex
C'est comme si les informations "datetime" n'avaient pas été analysées:
X
DateTime
1.449054e+09 15.31
1.449054e+09 16.19
...
Comment importer un .CSV avec une date stockée sous forme d'horodatage avec pandas?
Puis une fois que je pourrai importer le CSV, comment accéder aux lignes pour quelle date> 2015-12-02 12:02:18?
Ma solution était similaire à celle de Mike:
import pandas
import datetime
def dateparse (time_in_secs):
return datetime.datetime.fromtimestamp(float(time_in_secs))
x = pandas.read_csv('data.csv',delimiter=';', parse_dates=True,date_parser=dateparse, index_col='DateTime', names=['DateTime', 'X'], header=None)
out = x.truncate(before=datetime.datetime(2015,12,2,12,2,18))
Utilisation to_datetime
et passez unit='s'
pour analyser les unités en tant qu'horodatages Unix, ce sera beaucoup plus rapide:
In [7]:
pd.to_datetime(df.index, unit='s')
Out[7]:
DatetimeIndex(['2015-12-02 11:02:16.830000', '2015-12-02 11:02:17.430000',
'2015-12-02 11:02:18.040000', '2015-12-02 11:02:18.650000',
'2015-12-02 11:02:19.250000'],
dtype='datetime64[ns]', name=0, freq=None)
Timings:
In [9]:
import time
%%timeit
import time
def date_parser(string_list):
return [time.ctime(float(x)) for x in string_list]
df = pd.read_csv(io.StringIO(t), parse_dates=[0], sep=';',
date_parser=date_parser,
index_col='DateTime',
names=['DateTime', 'X'], header=None)
100 loops, best of 3: 4.07 ms per loop
et
In [12]:
%%timeit
t="""1449054136.83;15.31
1449054137.43;16.19
1449054138.04;19.22
1449054138.65;15.12
1449054139.25;13.12"""
df = pd.read_csv(io.StringIO(t), header=None, sep=';', index_col=[0])
df.index = pd.to_datetime(df.index, unit='s')
100 loops, best of 3: 1.69 ms per loop
Donc, en utilisant to_datetime
est 2 fois plus rapide sur ce petit ensemble de données, je m'attends à ce que cela évolue bien mieux que les autres méthodes
Vous pouvez analyser la date vous-même:
import time
import pandas as pd
def date_parser(string_list):
return [time.ctime(float(x)) for x in string_list]
df = pd.read_csv('data.csv', parse_dates=[0], sep=';',
date_parser=date_parser,
index_col='DateTime',
names=['DateTime', 'X'], header=None)
Le résultat:
>>> df
X
DateTime
2015-12-02 12:02:16 15.31
2015-12-02 12:02:17 16.19
2015-12-02 12:02:18 19.22
2015-12-02 12:02:18 15.12
2015-12-02 12:02:19 13.12