Comment convertir un index de chaînes de pandas au format datetime
mon dataframe 'df' est comme ça
value
2015-09-25 00:46 71.925000
2015-09-25 00:47 71.625000
2015-09-25 00:48 71.333333
2015-09-25 00:49 64.571429
2015-09-25 00:50 72.285714
mais l'index est de type chaîne, mais j'en ai besoin d'un format datetime parce que j'obtiens l'erreur
'Index' object has no attribute 'hour'
en utilisant
df['A'] = df.index.hour
Cela devrait fonctionner comme prévu. Essayez d'exécuter l'exemple suivant.
import pandas as pd
import io
data = """value
"2015-09-25 00:46" 71.925000
"2015-09-25 00:47" 71.625000
"2015-09-25 00:48" 71.333333
"2015-09-25 00:49" 64.571429
"2015-09-25 00:50" 72.285714"""
df = pd.read_table(io.StringIO(data), delim_whitespace=True)
# Converting the index as date
df.index = pd.to_datetime(df.index)
# Extracting hour & minute
df['A'] = df.index.hour
df['B'] = df.index.minute
df
# value A B
# 2015-09-25 00:46:00 71.925000 0 46
# 2015-09-25 00:47:00 71.625000 0 47
# 2015-09-25 00:48:00 71.333333 0 48
# 2015-09-25 00:49:00 64.571429 0 49
# 2015-09-25 00:50:00 72.285714 0 50
Vous pouvez créer explicitement a DatetimeIndex
lors de l’initialisation du cadre de données. En supposant que vos données soient au format chaîne
data = [
('2015-09-25 00:46', '71.925000'),
('2015-09-25 00:47', '71.625000'),
('2015-09-25 00:48', '71.333333'),
('2015-09-25 00:49', '64.571429'),
('2015-09-25 00:50', '72.285714'),
]
index, values = Zip(*data)
frame = pd.DataFrame({
'values': values
}, index=pd.DatetimeIndex(index))
print(frame.index.minute)
Je viens de donner une autre option pour cette question - vous devez utiliser ".dt" dans votre code:
import pandas as pd
df.index = pd.to_datetime(df.index)
#for get year
df.index.dt.year
#for get month
df.index.dt.month
#for get day
df.index.dt.day
#for get hour
df.index.dt.hour
#for get minute
df.index.dt.minute