web-dev-qa-db-fra.com

LogisticRegression: Type d'étiquette inconnu: 'continu' en utilisant sklearn dans python

J'ai le code suivant pour tester certains des algorithmes ML les plus populaires de la bibliothèque sklearn python:

import numpy as np
from sklearn                        import metrics, svm
from sklearn.linear_model           import LinearRegression
from sklearn.linear_model           import LogisticRegression
from sklearn.tree                   import DecisionTreeClassifier
from sklearn.neighbors              import KNeighborsClassifier
from sklearn.discriminant_analysis  import LinearDiscriminantAnalysis
from sklearn.naive_bayes            import GaussianNB
from sklearn.svm                    import SVC

trainingData    = np.array([ [2.3, 4.3, 2.5],  [1.3, 5.2, 5.2],  [3.3, 2.9, 0.8],  [3.1, 4.3, 4.0]  ])
trainingScores  = np.array( [3.4, 7.5, 4.5, 1.6] )
predictionData  = np.array([ [2.5, 2.4, 2.7],  [2.7, 3.2, 1.2] ])

clf = LinearRegression()
clf.fit(trainingData, trainingScores)
print("LinearRegression")
print(clf.predict(predictionData))

clf = svm.SVR()
clf.fit(trainingData, trainingScores)
print("SVR")
print(clf.predict(predictionData))

clf = LogisticRegression()
clf.fit(trainingData, trainingScores)
print("LogisticRegression")
print(clf.predict(predictionData))

clf = DecisionTreeClassifier()
clf.fit(trainingData, trainingScores)
print("DecisionTreeClassifier")
print(clf.predict(predictionData))

clf = KNeighborsClassifier()
clf.fit(trainingData, trainingScores)
print("KNeighborsClassifier")
print(clf.predict(predictionData))

clf = LinearDiscriminantAnalysis()
clf.fit(trainingData, trainingScores)
print("LinearDiscriminantAnalysis")
print(clf.predict(predictionData))

clf = GaussianNB()
clf.fit(trainingData, trainingScores)
print("GaussianNB")
print(clf.predict(predictionData))

clf = SVC()
clf.fit(trainingData, trainingScores)
print("SVC")
print(clf.predict(predictionData))

Les deux premiers fonctionnent bien, mais j'ai eu l'erreur suivante dans LogisticRegression call:

root@ubupc1:/home/ouhma# python stack.py 
LinearRegression
[ 15.72023529   6.46666667]
SVR
[ 3.95570063  4.23426243]
Traceback (most recent call last):
  File "stack.py", line 28, in <module>
    clf.fit(trainingData, trainingScores)
  File "/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/logistic.py", line 1174, in fit
    check_classification_targets(y)
  File "/usr/local/lib/python2.7/dist-packages/sklearn/utils/multiclass.py", line 172, in check_classification_targets
    raise ValueError("Unknown label type: %r" % y_type)
ValueError: Unknown label type: 'continuous'

Les données d'entrée sont les mêmes que lors des appels précédents, que se passe-t-il ici?

Et au fait, pourquoi il y a une énorme différence dans la première prédiction de LinearRegression() et SVR() algorithmes (15.72 vs 3.95)?

40
harrison4

Vous transmettez des éléments flottants à un classificateur qui attend des valeurs catégoriques en tant que vecteur cible. Si vous le convertissez en int, il sera accepté en tant qu'entrée (mais il sera discutable de savoir si c'est la bonne façon de le faire).

Il serait préférable de convertir vos résultats d’entraînement à l’aide de la fonction scikit labelEncoder .

Il en va de même pour vos qualificatifs DecisionTree et KNeothers.

from sklearn import preprocessing
from sklearn import utils

lab_enc = preprocessing.LabelEncoder()
encoded = lab_enc.fit_transform(trainingScores)
>>> array([1, 3, 2, 0], dtype=int64)

print(utils.multiclass.type_of_target(trainingScores))
>>> continuous

print(utils.multiclass.type_of_target(trainingScores.astype('int')))
>>> multiclass

print(utils.multiclass.type_of_target(encoded))
>>> multiclass
53
Maximilian Peters

J'ai eu du mal à résoudre le même problème lorsque j'essayais de fournir des classeurs aux flotteurs. Je voulais garder des flottants et non des nombres entiers pour plus de précision. Essayez d’utiliser des algorithmes de régression. Par exemple:

import numpy as np
from sklearn import linear_model
from sklearn import svm

classifiers = [
    svm.SVR(),
    linear_model.SGDRegressor(),
    linear_model.BayesianRidge(),
    linear_model.LassoLars(),
    linear_model.ARDRegression(),
    linear_model.PassiveAggressiveRegressor(),
    linear_model.TheilSenRegressor(),
    linear_model.LinearRegression()]

trainingData    = np.array([ [2.3, 4.3, 2.5],  [1.3, 5.2, 5.2],  [3.3, 2.9, 0.8],  [3.1, 4.3, 4.0]  ])
trainingScores  = np.array( [3.4, 7.5, 4.5, 1.6] )
predictionData  = np.array([ [2.5, 2.4, 2.7],  [2.7, 3.2, 1.2] ])

for item in classifiers:
    print(item)
    clf = item
    clf.fit(trainingData, trainingScores)
    print(clf.predict(predictionData),'\n')
16
Sam Perry