J'ai le code suivant pour tester certains des algorithmes ML les plus populaires de la bibliothèque sklearn python:
import numpy as np
from sklearn import metrics, svm
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
trainingData = np.array([ [2.3, 4.3, 2.5], [1.3, 5.2, 5.2], [3.3, 2.9, 0.8], [3.1, 4.3, 4.0] ])
trainingScores = np.array( [3.4, 7.5, 4.5, 1.6] )
predictionData = np.array([ [2.5, 2.4, 2.7], [2.7, 3.2, 1.2] ])
clf = LinearRegression()
clf.fit(trainingData, trainingScores)
print("LinearRegression")
print(clf.predict(predictionData))
clf = svm.SVR()
clf.fit(trainingData, trainingScores)
print("SVR")
print(clf.predict(predictionData))
clf = LogisticRegression()
clf.fit(trainingData, trainingScores)
print("LogisticRegression")
print(clf.predict(predictionData))
clf = DecisionTreeClassifier()
clf.fit(trainingData, trainingScores)
print("DecisionTreeClassifier")
print(clf.predict(predictionData))
clf = KNeighborsClassifier()
clf.fit(trainingData, trainingScores)
print("KNeighborsClassifier")
print(clf.predict(predictionData))
clf = LinearDiscriminantAnalysis()
clf.fit(trainingData, trainingScores)
print("LinearDiscriminantAnalysis")
print(clf.predict(predictionData))
clf = GaussianNB()
clf.fit(trainingData, trainingScores)
print("GaussianNB")
print(clf.predict(predictionData))
clf = SVC()
clf.fit(trainingData, trainingScores)
print("SVC")
print(clf.predict(predictionData))
Les deux premiers fonctionnent bien, mais j'ai eu l'erreur suivante dans LogisticRegression
call:
root@ubupc1:/home/ouhma# python stack.py
LinearRegression
[ 15.72023529 6.46666667]
SVR
[ 3.95570063 4.23426243]
Traceback (most recent call last):
File "stack.py", line 28, in <module>
clf.fit(trainingData, trainingScores)
File "/usr/local/lib/python2.7/dist-packages/sklearn/linear_model/logistic.py", line 1174, in fit
check_classification_targets(y)
File "/usr/local/lib/python2.7/dist-packages/sklearn/utils/multiclass.py", line 172, in check_classification_targets
raise ValueError("Unknown label type: %r" % y_type)
ValueError: Unknown label type: 'continuous'
Les données d'entrée sont les mêmes que lors des appels précédents, que se passe-t-il ici?
Et au fait, pourquoi il y a une énorme différence dans la première prédiction de LinearRegression()
et SVR()
algorithmes (15.72 vs 3.95)
?
Vous transmettez des éléments flottants à un classificateur qui attend des valeurs catégoriques en tant que vecteur cible. Si vous le convertissez en int
, il sera accepté en tant qu'entrée (mais il sera discutable de savoir si c'est la bonne façon de le faire).
Il serait préférable de convertir vos résultats d’entraînement à l’aide de la fonction scikit labelEncoder
.
Il en va de même pour vos qualificatifs DecisionTree et KNeothers.
from sklearn import preprocessing
from sklearn import utils
lab_enc = preprocessing.LabelEncoder()
encoded = lab_enc.fit_transform(trainingScores)
>>> array([1, 3, 2, 0], dtype=int64)
print(utils.multiclass.type_of_target(trainingScores))
>>> continuous
print(utils.multiclass.type_of_target(trainingScores.astype('int')))
>>> multiclass
print(utils.multiclass.type_of_target(encoded))
>>> multiclass
J'ai eu du mal à résoudre le même problème lorsque j'essayais de fournir des classeurs aux flotteurs. Je voulais garder des flottants et non des nombres entiers pour plus de précision. Essayez d’utiliser des algorithmes de régression. Par exemple:
import numpy as np
from sklearn import linear_model
from sklearn import svm
classifiers = [
svm.SVR(),
linear_model.SGDRegressor(),
linear_model.BayesianRidge(),
linear_model.LassoLars(),
linear_model.ARDRegression(),
linear_model.PassiveAggressiveRegressor(),
linear_model.TheilSenRegressor(),
linear_model.LinearRegression()]
trainingData = np.array([ [2.3, 4.3, 2.5], [1.3, 5.2, 5.2], [3.3, 2.9, 0.8], [3.1, 4.3, 4.0] ])
trainingScores = np.array( [3.4, 7.5, 4.5, 1.6] )
predictionData = np.array([ [2.5, 2.4, 2.7], [2.7, 3.2, 1.2] ])
for item in classifiers:
print(item)
clf = item
clf.fit(trainingData, trainingScores)
print(clf.predict(predictionData),'\n')