web-dev-qa-db-fra.com

Matrice de confusion et précision des tests pour le didacticiel PyTorch Transfer Learning

À la suite du didacticiel d'apprentissage de Pytorch Transfer, je souhaite signaler uniquement la précision du train et des tests ainsi que la matrice de confusion (par exemple, en utilisant la matrice de confusion sklearn). Comment puis je faire ça? Le tutoriel actuel ne rapporte que la précision du train/val et j'ai du mal à comprendre comment y incorporer le code de confusion sklearn. Lien vers le tutoriel original ici: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

%matplotlib inline
from graphviz import Digraph
import torch
from torch.autograd import Variable
# Author: Sasank Chilamkurthy

from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

plt.ion()
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}


data_dir = "images"
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                          data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                             shuffle=True, num_workers=4)
              for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def imshow(inp, title=None):
    """Imshow for Tensor."""
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated


# Get a batch of training data
inputs, classes = next(iter(dataloaders['train']))

# Make a grid from batch
out = torchvision.utils.make_grid(inputs)

imshow(out, title=[class_names[x] for x in classes])

def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for Epoch in range(num_epochs):
        print('Epoch {}/{}'.format(Epoch, num_epochs - 1))
        print('-' * 10)

        # Each Epoch has a training and validation phase
        for phase in ['train', 'val']:
            if phase == 'train':
                scheduler.step()
                model.train()  # Set model to training mode
            else:
                model.eval()   # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0

            # Iterate over data.
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # zero the parameter gradients
                optimizer.zero_grad()

                # forward
                # track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    # backward + optimize only if in training phase
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # statistics
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            Epoch_loss = running_loss / dataset_sizes[phase]
            Epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, Epoch_loss, Epoch_acc))

            # deep copy the model
            if phase == 'val' and Epoch_acc > best_acc:
                best_acc = Epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())

        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))

    # load best model weights
    model.load_state_dict(best_model_wts)
    return model

def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    images_so_far = 0
    fig = plt.figure()

    with torch.no_grad():
        for i, (inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.to(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                images_so_far += 1
                ax = plt.subplot(num_images//2, 2, images_so_far)
                ax.axis('off')
                ax.set_title('predicted: {}'.format(class_names[preds[j]]))
                imshow(inputs.cpu().data[j])

                if images_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)

model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 9)

model_ft = model_ft.to(device)

criterion = nn.CrossEntropyLoss()

# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)

# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
                       num_epochs=25)

visualize_model(model_ft)
6
Mona Jalal

Voici une approche (directe) légèrement modifiée utilisant la confusion_matrix de sklearn: -

from sklearn.metrics import confusion_matrix

nb_classes = 9

# Initialize the prediction and label lists(tensors)
predlist=torch.zeros(0,dtype=torch.long, device='cpu')
lbllist=torch.zeros(0,dtype=torch.long, device='cpu')

with torch.no_grad():
    for i, (inputs, classes) in enumerate(dataloaders['val']):
        inputs = inputs.to(device)
        classes = classes.to(device)
        outputs = model_ft(inputs)
        _, preds = torch.max(outputs, 1)

        # Append batch prediction results
        predlist=torch.cat([predlist,preds.view(-1).cpu()])
        lbllist=torch.cat([lbllist,classes.view(-1).cpu()])

# Confusion matrix
conf_mat=confusion_matrix(lbllist.numpy(), predlist.numpy())
print(conf_mat)

# Per-class accuracy
class_accuracy=100*conf_mat.diagonal()/conf_mat.sum(1)
print(class_accuracy)
2
anilsathyan7

Une autre façon simple d'obtenir de la précision consiste à utiliser sklearns "precision_score". Voici un exemple:

from sklearn.metrics import accuracy_score
y_pred = y_pred.data.numpy()
accuracy = accuracy_score(labels, np.argmax(y_pred, axis=1))

Vous devez d'abord obtenir les données de la variable. "y_pred" est les prédictions de votre modèle, et les étiquettes sont bien sûr vos étiquettes.

np.argmax renvoie l'index de la plus grande valeur à l'intérieur du tableau. Nous voulons la plus grande valeur car elle correspond à la classe de probabilité la plus élevée lors de l'utilisation de softmax pour la classification multi-classe. Le score de précision renverra un pourcentage de correspondances entre les étiquettes et y_pred.

1
NathanLamplough