web-dev-qa-db-fra.com

mise en cluster python scikit-learn avec les données manquantes

Je souhaite regrouper des données avec des colonnes manquantes. En le faisant manuellement, je calculerais la distance en cas de colonne manquante sans cette colonne.

Avec scikit-learn, les données manquantes ne sont pas possibles. Il n'y a également aucune chance de spécifier une fonction de distance utilisateur.

Existe-t-il une chance de se regrouper avec les données manquantes?

Exemple de données:

n_samples = 1500
noise = 0.05  
X, _ = make_swiss_roll(n_samples, noise)

rnd = np.random.Rand(X.shape[0],X.shape[1]) 
X[rnd<0.1] = np.nan
15
Michael Hecht

Je pense que vous pouvez utiliser un algorithme de type EM itératif:

Initialiser les valeurs manquantes à leurs moyennes de colonnes

Répétez jusqu'à la convergence:

  • Effectuer un regroupement K-means sur les données renseignées

  • Définissez les valeurs manquantes sur les coordonnées centroïdes des grappes auxquelles elles ont été attribuées

La mise en oeuvre

import numpy as np
from sklearn.cluster import KMeans

def kmeans_missing(X, n_clusters, max_iter=10):
    """Perform K-Means clustering on data with missing values.

    Args:
      X: An [n_samples, n_features] array of data to cluster.
      n_clusters: Number of clusters to form.
      max_iter: Maximum number of EM iterations to perform.

    Returns:
      labels: An [n_samples] vector of integer labels.
      centroids: An [n_clusters, n_features] array of cluster centroids.
      X_hat: Copy of X with the missing values filled in.
    """

    # Initialize missing values to their column means
    missing = ~np.isfinite(X)
    mu = np.nanmean(X, 0, keepdims=1)
    X_hat = np.where(missing, mu, X)

    for i in xrange(max_iter):
        if i > 0:
            # initialize KMeans with the previous set of centroids. this is much
            # faster and makes it easier to check convergence (since labels
            # won't be permuted on every iteration), but might be more prone to
            # getting stuck in local minima.
            cls = KMeans(n_clusters, init=prev_centroids)
        else:
            # do multiple random initializations in parallel
            cls = KMeans(n_clusters, n_jobs=-1)

        # perform clustering on the filled-in data
        labels = cls.fit_predict(X_hat)
        centroids = cls.cluster_centers_

        # fill in the missing values based on their cluster centroids
        X_hat[missing] = centroids[labels][missing]

        # when the labels have stopped changing then we have converged
        if i > 0 and np.all(labels == prev_labels):
            break

        prev_labels = labels
        prev_centroids = cls.cluster_centers_

    return labels, centroids, X_hat

Exemple avec de fausses données

from sklearn.datasets import make_blobs
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

def make_fake_data(fraction_missing, n_clusters=5, n_samples=1500,
                   n_features=3, seed=None):
    # complete data
    gen = np.random.RandomState(seed)
    X, true_labels = make_blobs(n_samples, n_features, n_clusters,
                                random_state=gen)
    # with missing values
    missing = gen.Rand(*X.shape) < fraction_missing
    Xm = np.where(missing, np.nan, X)
    return X, true_labels, Xm


X, true_labels, Xm = make_fake_data(fraction_missing=0.3, n_clusters=5, seed=0)
labels, centroids, X_hat = kmeans_missing(Xm, n_clusters=5)

# plot the inferred points, color-coded according to the true cluster labels
fig, ax = plt.subplots(1, 2, subplot_kw={'projection':'3d', 'aspect':'equal'})
ax[0].scatter3D(X[:, 0], X[:, 1], X[:, 2], c=true_labels, cmap='Gist_Rainbow')
ax[1].scatter3D(X_hat[:, 0], X_hat[:, 1], X_hat[:, 2], c=true_labels,
                cmap='Gist_Rainbow')
ax[0].set_title('Original data')
ax[1].set_title('Imputed (30% missing values)')
fig.tight_layout()

 enter image description here

Référence

Pour évaluer les performances de l'algorithme, nous pouvons utiliser l'information mutuelle ajustée entre les étiquettes de grappe vraies et inférées. Un score de 1 représente une performance parfaite et 0 représente une chance:

from sklearn.metrics import adjusted_mutual_info_score

fraction = np.arange(0.0, 1.0, 0.05)
n_repeat = 10
scores = np.empty((2, fraction.shape[0], n_repeat))
for i, frac in enumerate(fraction):
    for j in range(n_repeat):
        X, true_labels, Xm = make_fake_data(fraction_missing=frac, n_clusters=5)
        labels, centroids, X_hat = kmeans_missing(Xm, n_clusters=5)
        any_missing = np.any(~np.isfinite(Xm), 1)
        scores[0, i, j] = adjusted_mutual_info_score(labels, true_labels)
        scores[1, i, j] = adjusted_mutual_info_score(labels[any_missing],
                                                     true_labels[any_missing])

fig, ax = plt.subplots(1, 1)
scores_all, scores_missing = scores
ax.errorbar(fraction * 100, scores_all.mean(-1),
            yerr=scores_all.std(-1), label='All labels')
ax.errorbar(fraction * 100, scores_missing.mean(-1),
            yerr=scores_missing.std(-1),
            label='Labels with missing values')
ax.set_xlabel('% missing values')
ax.set_ylabel('Adjusted mutual information')
ax.legend(loc='best', frameon=False)
ax.set_ylim(0, 1)
ax.set_xlim(-5, 100)

 enter image description here

Mettre à jour:

En fait, après une rapide recherche sur Google, il semble que ce que j'ai trouvé ci-dessus est à peu près identique à l'algorithme k -POD pour le regroupement en K-moyennes des données manquantes (Chi, Chi & Baraniuk , 2016) .

24
ali_m

Voici un algorithme différent que j'utilise. Au lieu de remplacer les valeurs manquantes, les valeurs sont ignorées et afin de saisir les différences entre les mannequins manquants et non manquants. 

Par rapport à l’algorithme Alis, il semble plus facile pour les observations avec observatons manquantes de passer d’une classe à l’autre. Depuis je ne remplis pas les valeurs manquantes. 

Heureusement, je n'ai pas eu le temps de comparer le magnifique code de ALi, mais n'hésitez pas à le faire (je le ferai peut-être quand j'aurai le temps) et contribuer à la discussion sur la meilleure méthode. 

import numpy as np
class kmeans_missing(object):
    def __init__(self,potential_centroids,n_clusters):
        #initialize with potential centroids
        self.n_clusters=n_clusters
        self.potential_centroids=potential_centroids
    def fit(self,data,max_iter=10,number_of_runs=1):
        n_clusters=self.n_clusters
        potential_centroids=self.potential_centroids

        dist_mat=np.zeros((data.shape[0],n_clusters))
        all_centroids=np.zeros((n_clusters,data.shape[1],number_of_runs))

        costs=np.zeros((number_of_runs,))
        for k in range(number_of_runs):
            idx=np.random.choice(range(potential_centroids.shape[0]), size=(n_clusters), replace=False)
            centroids=potential_centroids[idx]
            clusters=np.zeros(data.shape[0])
            old_clusters=np.zeros(data.shape[0])
            for i in range(max_iter):
                #Calc dist to centroids
                for j in range(n_clusters):
                    dist_mat[:,j]=np.nansum((data-centroids[j])**2,axis=1)
                #Assign to clusters
                clusters=np.argmin(dist_mat,axis=1)
                #Update clusters
                for j in range(n_clusters):
                    centroids[j]=np.nanmean(data[clusters==j],axis=0)
                if all(np.equal(clusters,old_clusters)):
                    break # Break when to change in clusters
                if i==max_iter-1:
                    print('no convergence before maximal iterations are reached')
                else:
                    clusters,old_clusters=old_clusters,clusters

            all_centroids[:,:,k]=centroids
            costs[k]=np.mean(np.min(dist_mat,axis=1))
        self.costs=costs
        self.cost=np.min(costs)
        self.best_model=np.argmin(costs)
        self.centroids=all_centroids[:,:,self.best_model]
        self.all_centroids=all_centroids
    def predict(self,data):
        dist_mat=np.zeros((data.shape[0],self.n_clusters))
        for j in range(self.n_clusters):
            dist_mat[:,j]=np.nansum((data-self.centroids[j])**2,axis=1)
        prediction=np.argmin(dist_mat,axis=1)
        cost=np.min(dist_mat,axis=1)
        return prediction,cost

Voici un exemple sur la façon dont cela pourrait être utile.

from sklearn.datasets import make_blobs
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from kmeans_missing import *

def make_fake_data(fraction_missing, n_clusters=5, n_samples=1500,
                   n_features=2, seed=None):
    # complete data
    gen = np.random.RandomState(seed)
    X, true_labels = make_blobs(n_samples, n_features, n_clusters,
                                random_state=gen)
    # with missing values
    missing = gen.Rand(*X.shape) < fraction_missing
    Xm = np.where(missing, np.nan, X)
    return X, true_labels, Xm
X, true_labels, X_hat = make_fake_data(fraction_missing=0.3, n_clusters=3, seed=0)
X_missing_dummies=np.isnan(X_hat)
n_clusters=3
X_hat = np.concatenate((X_hat,X_missing_dummies),axis=1)
kmeans_m=kmeans_missing(X_hat,n_clusters)
kmeans_m.fit(X_hat,max_iter=100,number_of_runs=10)
print(kmeans_m.costs)
prediction,cost=kmeans_m.predict(X_hat)

for i in range(n_clusters):
    print([np.mean((prediction==i)*(true_labels==j)) for j in range(3)],np.mean((prediction==i)))

--MODIFIER--

Dans cet exemple, les occurrences des valeurs manquantes sont complètement aléatoires et le cas échéant. Ne pas ajouter les valeurs nominales manquantes est préférable au fait que les valeurs nominatives manquantes constituent du bruit. Ne pas les inclure serait également la bonne chose à faire pour comparer avec l'algorithme de ALi.

0