Je cherche un moyen de scinder un texte en n-grammes . Normalement, je ferais quelque chose comme:
import nltk
from nltk import bigrams
string = "I really like python, it's pretty awesome."
string_bigrams = bigrams(string)
print string_bigrams
Je suis conscient que nltk ne propose que des bigrammes et des trigrammes, mais existe-t-il un moyen de scinder mon texte en quatre grammes, cinq grammes ou même cent grammes?
Merci!
Excellentes réponses basées sur le python natif données par d'autres utilisateurs. Mais voici l'approche nltk
(au cas où, le PO serait pénalisé pour avoir réinventé ce qui existait déjà dans la bibliothèque nltk
).
Il existe un module ngram que les gens utilisent rarement dans nltk
. Ce n'est pas parce qu'il est difficile de lire les ngrams, mais la formation d'une base de modèle sur des ngrams où n> 3 entraînera une grande fragmentation des données.
from nltk import ngrams
sentence = 'this is a foo bar sentences and i want to ngramize it'
n = 6
sixgrams = ngrams(sentence.split(), n)
for grams in sixgrams:
print grams
Je suis surpris que cela ne soit pas encore apparu:
In [34]: sentence = "I really like python, it's pretty awesome.".split()
In [35]: N = 4
In [36]: grams = [sentence[i:i+N] for i in xrange(len(sentence)-N+1)]
In [37]: for gram in grams: print gram
['I', 'really', 'like', 'python,']
['really', 'like', 'python,', "it's"]
['like', 'python,', "it's", 'pretty']
['python,', "it's", 'pretty', 'awesome.']
voici un autre moyen simple pour faire n-grammes
>>> from nltk.util import ngrams
>>> text = "I am aware that nltk only offers bigrams and trigrams, but is there a way to split my text in four-grams, five-grams or even hundred-grams"
>>> tokenize = nltk.Word_tokenize(text)
>>> tokenize
['I', 'am', 'aware', 'that', 'nltk', 'only', 'offers', 'bigrams', 'and', 'trigrams', ',', 'but', 'is', 'there', 'a', 'way', 'to', 'split', 'my', 'text', 'in', 'four-grams', ',', 'five-grams', 'or', 'even', 'hundred-grams']
>>> bigrams = ngrams(tokenize,2)
>>> bigrams
[('I', 'am'), ('am', 'aware'), ('aware', 'that'), ('that', 'nltk'), ('nltk', 'only'), ('only', 'offers'), ('offers', 'bigrams'), ('bigrams', 'and'), ('and', 'trigrams'), ('trigrams', ','), (',', 'but'), ('but', 'is'), ('is', 'there'), ('there', 'a'), ('a', 'way'), ('way', 'to'), ('to', 'split'), ('split', 'my'), ('my', 'text'), ('text', 'in'), ('in', 'four-grams'), ('four-grams', ','), (',', 'five-grams'), ('five-grams', 'or'), ('or', 'even'), ('even', 'hundred-grams')]
>>> trigrams=ngrams(tokenize,3)
>>> trigrams
[('I', 'am', 'aware'), ('am', 'aware', 'that'), ('aware', 'that', 'nltk'), ('that', 'nltk', 'only'), ('nltk', 'only', 'offers'), ('only', 'offers', 'bigrams'), ('offers', 'bigrams', 'and'), ('bigrams', 'and', 'trigrams'), ('and', 'trigrams', ','), ('trigrams', ',', 'but'), (',', 'but', 'is'), ('but', 'is', 'there'), ('is', 'there', 'a'), ('there', 'a', 'way'), ('a', 'way', 'to'), ('way', 'to', 'split'), ('to', 'split', 'my'), ('split', 'my', 'text'), ('my', 'text', 'in'), ('text', 'in', 'four-grams'), ('in', 'four-grams', ','), ('four-grams', ',', 'five-grams'), (',', 'five-grams', 'or'), ('five-grams', 'or', 'even'), ('or', 'even', 'hundred-grams')]
>>> fourgrams=ngrams(tokenize,4)
>>> fourgrams
[('I', 'am', 'aware', 'that'), ('am', 'aware', 'that', 'nltk'), ('aware', 'that', 'nltk', 'only'), ('that', 'nltk', 'only', 'offers'), ('nltk', 'only', 'offers', 'bigrams'), ('only', 'offers', 'bigrams', 'and'), ('offers', 'bigrams', 'and', 'trigrams'), ('bigrams', 'and', 'trigrams', ','), ('and', 'trigrams', ',', 'but'), ('trigrams', ',', 'but', 'is'), (',', 'but', 'is', 'there'), ('but', 'is', 'there', 'a'), ('is', 'there', 'a', 'way'), ('there', 'a', 'way', 'to'), ('a', 'way', 'to', 'split'), ('way', 'to', 'split', 'my'), ('to', 'split', 'my', 'text'), ('split', 'my', 'text', 'in'), ('my', 'text', 'in', 'four-grams'), ('text', 'in', 'four-grams', ','), ('in', 'four-grams', ',', 'five-grams'), ('four-grams', ',', 'five-grams', 'or'), (',', 'five-grams', 'or', 'even'), ('five-grams', 'or', 'even', 'hundred-grams')]
Utiliser uniquement les outils nltk
from nltk.tokenize import Word_tokenize
from nltk.util import ngrams
def get_ngrams(text, n ):
n_grams = ngrams(Word_tokenize(text), n)
return [ ' '.join(grams) for grams in n_grams]
Exemple de sortie
get_ngrams('This is the simplest text i could think of', 3 )
['This is the', 'is the simplest', 'the simplest text', 'simplest text i', 'text i could', 'i could think', 'could think of']
Afin de conserver les ngrams au format tableau, supprimez simplement ' '.join
Vous pouvez facilement créer votre propre fonction pour le faire en utilisant itertools
:
from itertools import izip, islice, tee
s = 'spam and eggs'
N = 3
trigrams = izip(*(islice(seq, index, None) for index, seq in enumerate(tee(s, N))))
list(trigrams)
# [('s', 'p', 'a'), ('p', 'a', 'm'), ('a', 'm', ' '),
# ('m', ' ', 'a'), (' ', 'a', 'n'), ('a', 'n', 'd'),
# ('n', 'd', ' '), ('d', ' ', 'e'), (' ', 'e', 'g'),
# ('e', 'g', 'g'), ('g', 'g', 's')]
Pour four_grams c'est déjà dans NLTK , voici un morceau de code qui peut vous aider dans ceci:
from nltk.collocations import *
import nltk
#You should tokenize your text
text = "I do not like green eggs and ham, I do not like them Sam I am!"
tokens = nltk.wordpunct_tokenize(text)
fourgrams=nltk.collocations.QuadgramCollocationFinder.from_words(tokens)
for fourgram, freq in fourgrams.ngram_fd.items():
print fourgram, freq
J'espère que ça aide.
Une approche plus élégante pour construire des bigrams avec la fonction Zip()
intégrée de python. Convertissez simplement la chaîne d'origine en une liste par split()
, puis transmettez la liste une fois normalement et une fois décalée d'un élément.
string = "I really like python, it's pretty awesome."
def find_bigrams(s):
input_list = s.split(" ")
return Zip(input_list, input_list[1:])
def find_ngrams(s, n):
input_list = s.split(" ")
return Zip(*[input_list[i:] for i in range(n)])
find_bigrams(string)
[('I', 'really'), ('really', 'like'), ('like', 'python,'), ('python,', "it's"), ("it's", 'pretty'), ('pretty', 'awesome.')]
Je n'ai jamais traité avec nltk, mais N-grammes dans le cadre d'un projet de petite classe. Si vous voulez trouver la fréquence de tous les N-grammes apparaissant dans la chaîne, voici une façon de le faire. D
vous donnerait l'histogramme de vos mots-N.
D = dict()
string = 'whatever string...'
strparts = string.split()
for i in range(len(strparts)-N): # N-grams
try:
D[Tuple(strparts[i:i+N])] += 1
except:
D[Tuple(strparts[i:i+N])] = 1
Les gens ont déjà assez bien répondu au scénario dans lequel vous avez besoin de bigrames ou de trigrammes, mais si vous avez besoin de everygram pour la phrase, vous pouvez utiliser nltk.util.everygrams
>>> from nltk.util import everygrams
>>> message = "who let the dogs out"
>>> msg_split = message.split()
>>> list(everygrams(msg_split))
[('who',), ('let',), ('the',), ('dogs',), ('out',), ('who', 'let'), ('let', 'the'), ('the', 'dogs'), ('dogs', 'out'), ('who', 'let', 'the'), ('let', 'the', 'dogs'), ('the', 'dogs', 'out'), ('who', 'let', 'the', 'dogs'), ('let', 'the', 'dogs', 'out'), ('who', 'let', 'the', 'dogs', 'out')]
Si vous avez une limite, comme dans le cas des trigrammes où la longueur maximale doit être égale à 3, vous pouvez utiliser max_len param pour le spécifier.
>>> list(everygrams(msg_split, max_len=2))
[('who',), ('let',), ('the',), ('dogs',), ('out',), ('who', 'let'), ('let', 'the'), ('the', 'dogs'), ('dogs', 'out')]
Vous pouvez simplement modifier le paramètre max_len pour obtenir un gramme, à savoir quatre grammes, cinq grammes, six ou même cent grammes.
Les solutions mentionnées précédemment peuvent être modifiées pour mettre en œuvre la solution susmentionnée, mais cette solution est beaucoup plus simple que cela.
Pour en savoir plus, cliquez ici
Et quand vous avez juste besoin d'un gramme spécifique comme bigram ou trigram, etc., vous pouvez utiliser le nltk.util.ngrams comme mentionné dans la réponse de M.A.Hassan.
Si l'efficacité est un problème et que vous devez créer plusieurs n-grammes différents (jusqu'à cent, comme vous le dites), mais que vous souhaitez utiliser du python pur, je le ferais:
from itertools import chain
def n_grams(seq, n=1):
"""Returns an itirator over the n-grams given a listTokens"""
shiftToken = lambda i: (el for j,el in enumerate(seq) if j>=i)
shiftedTokens = (shiftToken(i) for i in range(n))
tupleNGrams = Zip(*shiftedTokens)
return tupleNGrams # if join in generator : (" ".join(i) for i in tupleNGrams)
def range_ngrams(listTokens, ngramRange=(1,2)):
"""Returns an itirator over all n-grams for n in range(ngramRange) given a listTokens."""
return chain(*(n_grams(listTokens, i) for i in range(*ngramRange)))
Utilisation:
>>> input_list = input_list = 'test the ngrams generator'.split()
>>> list(range_ngrams(input_list, ngramRange=(1,3)))
[('test',), ('the',), ('ngrams',), ('generator',), ('test', 'the'), ('the', 'ngrams'), ('ngrams', 'generator'), ('test', 'the', 'ngrams'), ('the', 'ngrams', 'generator')]
~ Même vitesse que NLTK:
import nltk
%%timeit
input_list = 'test the ngrams interator vs nltk '*10**6
nltk.ngrams(input_list,n=5)
# 7.02 ms ± 79 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit
input_list = 'test the ngrams interator vs nltk '*10**6
n_grams(input_list,n=5)
# 7.01 ms ± 103 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit
input_list = 'test the ngrams interator vs nltk '*10**6
nltk.ngrams(input_list,n=1)
nltk.ngrams(input_list,n=2)
nltk.ngrams(input_list,n=3)
nltk.ngrams(input_list,n=4)
nltk.ngrams(input_list,n=5)
# 7.32 ms ± 241 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit
input_list = 'test the ngrams interator vs nltk '*10**6
range_ngrams(input_list, ngramRange=(1,6))
# 7.13 ms ± 165 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
Republier de ma réponse précédente .
Vous pouvez utiliser sklearn.feature_extraction.text.CountVectorizer :
import sklearn.feature_extraction.text # FYI http://scikit-learn.org/stable/install.html
ngram_size = 4
string = ["I really like python, it's pretty awesome."]
vect = sklearn.feature_extraction.text.CountVectorizer(ngram_range=(ngram_size,ngram_size))
vect.fit(string)
print('{1}-grams: {0}'.format(vect.get_feature_names(), ngram_size))
les sorties:
4-grams: [u'like python it pretty', u'python it pretty awesome', u'really like python it']
Vous pouvez définir sur ngram_size
pour n’importe quel entier positif. C'est à dire. vous pouvez diviser un texte en quatre, cinq ou même cent grammes.
Nltk est génial, mais représente parfois des frais généraux pour certains projets:
import re
def tokenize(text, ngrams=1):
text = re.sub(r'[\b\(\)\\\"\'\/\[\]\s+\,\.:\?;]', ' ', text)
text = re.sub(r'\s+', ' ', text)
tokens = text.split()
return [Tuple(tokens[i:i+ngrams]) for i in xrange(len(tokens)-ngrams+1)]
Exemple d'utilisation:
>> text = "This is an example text"
>> tokenize(text, 2)
[('This', 'is'), ('is', 'an'), ('an', 'example'), ('example', 'text')]
>> tokenize(text, 3)
[('This', 'is', 'an'), ('is', 'an', 'example'), ('an', 'example', 'text')]
Vous pouvez obtenir tous les 4-6grammes en utilisant le code sans autre paquet ci-dessous:
from itertools import chain
def get_m_2_ngrams(input_list, min, max):
for s in chain(*[get_ngrams(input_list, k) for k in range(min, max+1)]):
yield ' '.join(s)
def get_ngrams(input_list, n):
return Zip(*[input_list[i:] for i in range(n)])
if __== '__main__':
input_list = ['I', 'am', 'aware', 'that', 'nltk', 'only', 'offers', 'bigrams', 'and', 'trigrams', ',', 'but', 'is', 'there', 'a', 'way', 'to', 'split', 'my', 'text', 'in', 'four-grams', ',', 'five-grams', 'or', 'even', 'hundred-grams']
for s in get_m_2_ngrams(input_list, 4, 6):
print(s)
la sortie est en dessous:
I am aware that
am aware that nltk
aware that nltk only
that nltk only offers
nltk only offers bigrams
only offers bigrams and
offers bigrams and trigrams
bigrams and trigrams ,
and trigrams , but
trigrams , but is
, but is there
but is there a
is there a way
there a way to
a way to split
way to split my
to split my text
split my text in
my text in four-grams
text in four-grams ,
in four-grams , five-grams
four-grams , five-grams or
, five-grams or even
five-grams or even hundred-grams
I am aware that nltk
am aware that nltk only
aware that nltk only offers
that nltk only offers bigrams
nltk only offers bigrams and
only offers bigrams and trigrams
offers bigrams and trigrams ,
bigrams and trigrams , but
and trigrams , but is
trigrams , but is there
, but is there a
but is there a way
is there a way to
there a way to split
a way to split my
way to split my text
to split my text in
split my text in four-grams
my text in four-grams ,
text in four-grams , five-grams
in four-grams , five-grams or
four-grams , five-grams or even
, five-grams or even hundred-grams
I am aware that nltk only
am aware that nltk only offers
aware that nltk only offers bigrams
that nltk only offers bigrams and
nltk only offers bigrams and trigrams
only offers bigrams and trigrams ,
offers bigrams and trigrams , but
bigrams and trigrams , but is
and trigrams , but is there
trigrams , but is there a
, but is there a way
but is there a way to
is there a way to split
there a way to split my
a way to split my text
way to split my text in
to split my text in four-grams
split my text in four-grams ,
my text in four-grams , five-grams
text in four-grams , five-grams or
in four-grams , five-grams or even
four-grams , five-grams or even hundred-grams
vous pouvez trouver plus de détails à ce sujet blog