web-dev-qa-db-fra.com

numpy array concatenate: "ValueError: tous les tableaux d'entrée doivent avoir le même nombre de dimensions"

Comment concaténer ces tableaux numpy?

premier np.array avec une forme (5,4)

[[  6487    400 489580      0]
 [  6488    401 492994      0]
 [  6491    408 489247      0]
 [  6491    408 489247      0]
 [  6492    402 499013      0]]

deuxième np.array avec une forme (1,5)

[  16.   15.   12.  12.  17. ]

le résultat final devrait être

[[  6487    400    489580    0   16]
 [  6488    401    492994    0   15]
 [  6491    408    489247    0   12]
 [  6491    408    489247    0   12]
 [  6492    402    499013    0   17]]

J'ai essayé np.concatenate([array1, array2]) mais j'obtiens cette erreur

ValueError: all the input arrays must have same number of dimensions

Qu'est-ce que je fais mal?

19
RaduS

Utiliser np.concatenate, nous devons étendre le second tableau à 2D puis concaténer le long de axis=1 -

np.concatenate((a,b[:,None]),axis=1)

Alternativement, nous pouvons utiliser np.column_stack qui s'en occupe -

np.column_stack((a,b))

Exemple de cycle -

In [84]: a
Out[84]: 
array([[54, 30, 55, 12],
       [64, 94, 50, 72],
       [67, 31, 56, 43],
       [26, 58, 35, 14],
       [97, 76, 84, 52]])

In [85]: b
Out[85]: array([56, 70, 43, 19, 16])

In [86]: np.concatenate((a,b[:,None]),axis=1)
Out[86]: 
array([[54, 30, 55, 12, 56],
       [64, 94, 50, 72, 70],
       [67, 31, 56, 43, 43],
       [26, 58, 35, 14, 19],
       [97, 76, 84, 52, 16]])

Si b est tel que c'est un 1D tableau de dtype=object avec une forme de (1,), très probablement toutes les données sont contenues dans le seul élément de celui-ci, nous devons les aplatir avant de les concaténer. Pour cela, nous pouvons utiliser np.concatenate dessus aussi. Voici un exemple d'analyse pour clarifier le point -

In [118]: a
Out[118]: 
array([[54, 30, 55, 12],
       [64, 94, 50, 72],
       [67, 31, 56, 43],
       [26, 58, 35, 14],
       [97, 76, 84, 52]])

In [119]: b
Out[119]: array([array([30, 41, 76, 13, 69])], dtype=object)

In [120]: b.shape
Out[120]: (1,)

In [121]: np.concatenate((a,np.concatenate(b)[:,None]),axis=1)
Out[121]: 
array([[54, 30, 55, 12, 30],
       [64, 94, 50, 72, 41],
       [67, 31, 56, 43, 76],
       [26, 58, 35, 14, 13],
       [97, 76, 84, 52, 69]])
23
Divakar

Il y a aussi np.c_

>>> a = np.arange(20).reshape(5, 4)
>>> b = np.arange(-1, -6, -1)
>>> a
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15],
       [16, 17, 18, 19]])                                                                                                                                   
>>> b                                                                                                                                                       
array([-1, -2, -3, -4, -5])                                                                                                                                 
>>> np.c_[a, b]
array([[ 0,  1,  2,  3, -1],          
       [ 4,  5,  6,  7, -2],                       
       [ 8,  9, 10, 11, -3],                      
       [12, 13, 14, 15, -4],                                
       [16, 17, 18, 19, -5]])
3
Paul Panzer

Vous pouvez faire quelque chose comme ça.

import numpy as np

x = np.random.randint(100, size=(5, 4))
y = [16, 15, 12, 12, 17]

print(x)

val = np.concatenate((x,np.reshape(y,(x.shape[0],1))),axis=1)
print(val)

Cela génère:

[[32 37 35 53]
 [64 23 95 76]
 [17 76 11 30]
 [35 42  6 80]
 [61 88  7 56]]

[[32 37 35 53 16]
 [64 23 95 76 15]
 [17 76 11 30 12]
 [35 42  6 80 12]
 [61 88  7 56 17]]
2
Wasi Ahmad