web-dev-qa-db-fra.com

Obtenez la moyenne sur plusieurs Pandas DataFrames

Je génère un certain nombre de trames de données avec la même forme, et je veux les comparer les unes aux autres. Je veux pouvoir obtenir la moyenne et la médiane à travers les trames de données.

         Source.0  Source.1  Source.2  Source.3
cluster                                        
0        0.001182  0.184535  0.814230  0.000054
1        0.000001  0.160490  0.839508  0.000001
2        0.000001  0.173829  0.826114  0.000055
3        0.000432  0.180065  0.819502  0.000001
4        0.000152  0.157041  0.842694  0.000113
5        0.000183  0.174142  0.825674  0.000001
6        0.000001  0.151556  0.848405  0.000038
7        0.000771  0.177583  0.821645  0.000001
8        0.000001  0.202059  0.797939  0.000001
9        0.000025  0.189537  0.810410  0.000028
10       0.006142  0.003041  0.493912  0.496905
11       0.003739  0.002367  0.514216  0.479678
12       0.002334  0.001517  0.529041  0.467108
13       0.003458  0.000001  0.532265  0.464276
14       0.000405  0.005655  0.527576  0.466364
15       0.002557  0.003233  0.507954  0.486256
16       0.004161  0.000001  0.491271  0.504568
17       0.001364  0.001330  0.528311  0.468996
18       0.002886  0.000001  0.506392  0.490721
19       0.001823  0.002498  0.509620  0.486059

         Source.0  Source.1  Source.2  Source.3
cluster                                        
0        0.000001  0.197108  0.802495  0.000396
1        0.000001  0.157860  0.842076  0.000063
2        0.094956  0.203057  0.701662  0.000325
3        0.000001  0.181948  0.817841  0.000210
4        0.000003  0.169680  0.830316  0.000001
5        0.000362  0.177194  0.822443  0.000001
6        0.000001  0.146807  0.852924  0.000268
7        0.001087  0.178994  0.819564  0.000354
8        0.000001  0.202182  0.797333  0.000485
9        0.000348  0.181399  0.818252  0.000001
10       0.003050  0.000247  0.506777  0.489926
11       0.004420  0.000001  0.513927  0.481652
12       0.006488  0.001396  0.527197  0.464919
13       0.001510  0.000001  0.525987  0.472502
14       0.000001  0.000001  0.520737  0.479261
15       0.000001  0.001765  0.515658  0.482575
16       0.000001  0.000001  0.492550  0.507448
17       0.002855  0.000199  0.526535  0.470411
18       0.000001  0.001952  0.498303  0.499744
19       0.001232  0.000001  0.506612  0.492155

Ensuite, je veux obtenir la moyenne de ces deux trames de données.

Quelle est la manière la plus simple de faire ça?

Juste pour clarifier, je veux obtenir la moyenne de chaque cellule particulière lorsque les index et les colonnes de toutes les trames de données sont exactement les mêmes.

Donc, dans l'exemple que j'ai donné, la moyenne de [0,Source.0] serait (0,001182 + 0,000001)/2 = 0,0005915.

27
Tim

En supposant que les deux cadres de données ont les mêmes colonnes, vous pouvez simplement les concaténer et calculer vos statistiques récapitulatives sur les trames concaténées:

import numpy as np
import pandas as pd

# some random data frames
df1 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))
df2 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))

# concatenate them
df_concat = pd.concat((df1, df2))

print df_concat.mean()
# x   -0.163044
# y    2.120000
# dtype: float64

print df_concat.median()
# x   -0.192037
# y    2.000000
# dtype: float64

Mise à jour

Si vous souhaitez calculer des statistiques sur chaque ensemble de lignes avec le même index dans les deux jeux de données, vous pouvez utiliser .groupby() pour regrouper les données par index de ligne, puis appliquer la moyenne, la médiane, etc.:

by_row_index = df_concat.groupby(df_concat.index)
df_means = by_row_index.mean()

print df_means.head()
#           x    y
# 0 -0.850794  1.5
# 1  0.159038  1.5
# 2  0.083278  1.0
# 3 -0.540336  0.5
# 4  0.390954  3.5

Cette méthode fonctionnera même lorsque vos cadres de données ont un nombre de lignes inégal - si un index de ligne particulier est manquant dans l'un des deux cadres de données, la moyenne/médiane sera calculée sur la seule ligne existante.

29
ali_m

Je suis similaire à @ALi_m, mais comme vous voulez une combinaison moyenne par ligne et colonne, je conclus différemment:

df1 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))
df2 = pd.DataFrame(dict(x=np.random.randn(100), y=np.random.randint(0, 5, 100)))
df = pd.concat([df1, df2])
foo = df.groupby(level=1).mean()
foo.head()

          x    y
0  0.841282  2.5
1  0.716749  1.0
2 -0.551903  2.5
3  1.240736  1.5
4  1.227109  2.0
14
FooBar

Vous pouvez simplement assigner une étiquette à chaque frame, l'appeler group puis concat et groupby pour faire ce que vous voulez:

In [57]: df = DataFrame(np.random.randn(10, 4), columns=list('abcd'))

In [58]: df2 = df.copy()

In [59]: dfs = [df, df2]

In [60]: df
Out[60]:
        a       b       c       d
0  0.1959  0.1260  0.1464  0.1631
1  0.9344 -1.8154  1.4529 -0.6334
2  0.0390  0.4810  1.1779 -1.1799
3  0.3542  0.3819 -2.0895  0.8877
4 -2.2898 -1.0585  0.8083 -0.2126
5  0.3727 -0.6867 -1.3440 -1.4849
6 -1.1785  0.0885  1.0945 -1.6271
7 -1.7169  0.3760 -1.4078  0.8994
8  0.0508  0.4891  0.0274 -0.6369
9 -0.7019  1.0425 -0.5476 -0.5143

In [61]: for i, d in enumerate(dfs):
   ....:     d['group'] = i
   ....:

In [62]: dfs[0]
Out[62]:
        a       b       c       d  group
0  0.1959  0.1260  0.1464  0.1631      0
1  0.9344 -1.8154  1.4529 -0.6334      0
2  0.0390  0.4810  1.1779 -1.1799      0
3  0.3542  0.3819 -2.0895  0.8877      0
4 -2.2898 -1.0585  0.8083 -0.2126      0
5  0.3727 -0.6867 -1.3440 -1.4849      0
6 -1.1785  0.0885  1.0945 -1.6271      0
7 -1.7169  0.3760 -1.4078  0.8994      0
8  0.0508  0.4891  0.0274 -0.6369      0
9 -0.7019  1.0425 -0.5476 -0.5143      0

In [63]: final = pd.concat(dfs, ignore_index=True)

In [64]: final
Out[64]:
         a       b       c       d  group
0   0.1959  0.1260  0.1464  0.1631      0
1   0.9344 -1.8154  1.4529 -0.6334      0
2   0.0390  0.4810  1.1779 -1.1799      0
3   0.3542  0.3819 -2.0895  0.8877      0
4  -2.2898 -1.0585  0.8083 -0.2126      0
5   0.3727 -0.6867 -1.3440 -1.4849      0
6  -1.1785  0.0885  1.0945 -1.6271      0
..     ...     ...     ...     ...    ...
13  0.3542  0.3819 -2.0895  0.8877      1
14 -2.2898 -1.0585  0.8083 -0.2126      1
15  0.3727 -0.6867 -1.3440 -1.4849      1
16 -1.1785  0.0885  1.0945 -1.6271      1
17 -1.7169  0.3760 -1.4078  0.8994      1
18  0.0508  0.4891  0.0274 -0.6369      1
19 -0.7019  1.0425 -0.5476 -0.5143      1

[20 rows x 5 columns]

In [65]: final.groupby('group').mean()
Out[65]:
           a       b       c       d
group
0     -0.394 -0.0576 -0.0682 -0.4339
1     -0.394 -0.0576 -0.0682 -0.4339

Ici, chaque group est identique, mais c'est uniquement parce que df == df2.

Alternativement, vous pouvez jeter les cadres dans un Panel:

In [69]: df = DataFrame(np.random.randn(10, 4), columns=list('abcd'))

In [70]: df2 = DataFrame(np.random.randn(10, 4), columns=list('abcd'))

In [71]: panel = pd.Panel({0: df, 1: df2})

In [72]: panel
Out[72]:
<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 10 (major_axis) x 4 (minor_axis)
Items axis: 0 to 1
Major_axis axis: 0 to 9
Minor_axis axis: a to d

In [73]: panel.mean()
Out[73]:
        0       1
a  0.3839  0.2956
b  0.1855 -0.3164
c -0.1167 -0.0627
d -0.2338 -0.0450
6
Phillip Cloud

Selon le commentaire de Niklas, la solution à la question est panel.mean(axis=0).

À titre d'exemple plus complet:

import pandas as pd
import numpy as np

dfs = {}
nrows = 4
ncols = 3
for i in range(4):
    dfs[i] = pd.DataFrame(np.arange(i, nrows*ncols+i).reshape(nrows, ncols),
                          columns=list('abc'))
    print('DF{i}:\n{df}\n'.format(i=i, df=dfs[i]))

panel = pd.Panel(dfs)
print('Mean of stacked DFs:\n{df}'.format(df=panel.mean(axis=0)))

Donnera la sortie suivante:

DF0:
   a   b   c
0  0   1   2
1  3   4   5
2  6   7   8
3  9  10  11

DF1:
    a   b   c
0   1   2   3
1   4   5   6
2   7   8   9
3  10  11  12

DF2:
    a   b   c
0   2   3   4
1   5   6   7
2   8   9  10
3  11  12  13

DF3:
    a   b   c
0   3   4   5
1   6   7   8
2   9  10  11
3  12  13  14

Mean of stacked DFs:
      a     b     c
0   1.5   2.5   3.5
1   4.5   5.5   6.5
2   7.5   8.5   9.5
3  10.5  11.5  12.5
5
user394430

Voici une solution d'abord dépilez les deux trames de données afin qu'elles soient des séries avec plusieurs index (cluster, noms de colonnes) ... ensuite vous pouvez utiliser l'ajout et la division de séries, qui effectuent automatiquement l'opération sur les index, enfin les dépilent ... la voici code...

averages = (df1.stack()+df2.stack())/2
averages = averages.unstack()

Et vous avez terminé ...

Ou à des fins plus générales ...

dfs = [df1,df2]
averages = pd.concat([each.stack() for each in dfs],axis=1)\
             .apply(lambda x:x.mean(),axis=1)\
             .unstack()
4
ZJS