Actuellement, outils d'E/S pandas ne gère pas la méthode read_xml()
et la contrepartie to_xml()
. Cependant, read_json
prouve que des structures arborescentes peuvent être implémentées pour l'importation de trames de données et read_html
pour les formats de balisage.
Si l'équipe pandas envisage une telle méthode read_xml
Pour une future version pandas, quelle implémentation poursuivra-t-elle: analyse avec xml.etree.ElementTree
Intégré avec ses fonctions iterfind()
ou iterparse()
ou le module tiers, lxml
avec ses méthodes XPath 1.0 et XSLT 1.0?
Voici mes tests pour quatre types de méthodes sur une entrée XML simple, plate et centrée sur les éléments. Tous sont configurés pour une analyse généralisée pour tous les enfants de deuxième niveau de root et chaque méthode doit produire exactement la même pandas trame de données. Tous les appels sauf le dernier pd.Dataframe()
sur la liste des dictionnaires. La méthode XSLT transforme XML en CSV pour la fonction StringIO()
convertie en pd.read_csv()
.
Question (en plusieurs parties)
PERFORMANCE: Comment expliquez-vous le ralentissement iterparse
souvent recommandé pour les fichiers plus volumineux car le fichier est analysé de manière itérative? Est-ce en partie dû aux vérifications logiques de if
?
MÉMOIRE: La mémoire du processeur est-elle en corrélation avec les temporisations des appels d'E/S? XSLT et XPath 1.0 ont tendance à ne pas évoluer correctement avec des documents XML plus volumineux car le fichier entier doit être lu en mémoire pour être analysé.
STRATÉGIE: La liste des dictionnaires est-elle une stratégie optimale pour l'appel de Dataframe()
? Voir ces réponses intéressantes: générateur version et une iterwalk définie par l'utilisateur version. Les deux listes ascendantes vers la trame de données.
Input Data (Stack Overflow's current top users by year dont nos pandas amis sont inclus)
<?xml version="1.0" encoding="utf-8"?>
<stackoverflow>
<topusers>
<user>Gordon Linoff</user>
<link>http://www.stackoverflow.com//users/1144035/gordon-linoff</link>
<location>New York, United States</location>
<year_rep>5,985</year_rep>
<total_rep>499,408</total_rep>
<tag1>sql</tag1>
<tag2>sql-server</tag2>
<tag3>mysql</tag3>
</topusers>
<topusers>
<user>Günter Zöchbauer</user>
<link>http://www.stackoverflow.com//users/217408/g%c3%bcnter-z%c3%b6chbauer</link>
<location>Linz, Austria</location>
<year_rep>5,835</year_rep>
<total_rep>154,439</total_rep>
<tag1>angular2</tag1>
<tag2>TypeScript</tag2>
<tag3>javascript</tag3>
</topusers>
<topusers>
<user>jezrael</user>
<link>http://www.stackoverflow.com//users/2901002/jezrael</link>
<location>Bratislava, Slovakia</location>
<year_rep>5,740</year_rep>
<total_rep>83,237</total_rep>
<tag1>pandas</tag1>
<tag2>python</tag2>
<tag3>dataframe</tag3>
</topusers>
<topusers>
<user>VonC</user>
<link>http://www.stackoverflow.com//users/6309/vonc</link>
<location>France</location>
<year_rep>5,577</year_rep>
<total_rep>651,397</total_rep>
<tag1>git</tag1>
<tag2>github</tag2>
<tag3>docker</tag3>
</topusers>
<topusers>
<user>Martijn Pieters</user>
<link>http://www.stackoverflow.com//users/100297/martijn-pieters</link>
<location>Cambridge, United Kingdom</location>
<year_rep>5,337</year_rep>
<total_rep>525,176</total_rep>
<tag1>python</tag1>
<tag2>python-3.x</tag2>
<tag3>python-2.7</tag3>
</topusers>
<topusers>
<user>T.J. Crowder</user>
<link>http://www.stackoverflow.com//users/157247/t-j-crowder</link>
<location>United Kingdom</location>
<year_rep>5,258</year_rep>
<total_rep>508,310</total_rep>
<tag1>javascript</tag1>
<tag2>jquery</tag2>
<tag3>Java</tag3>
</topusers>
<topusers>
<user>akrun</user>
<link>http://www.stackoverflow.com//users/3732271/akrun</link>
<location></location>
<year_rep>5,188</year_rep>
<total_rep>229,553</total_rep>
<tag1>r</tag1>
<tag2>dplyr</tag2>
<tag3>dataframe</tag3>
</topusers>
<topusers>
<user>Wiktor Stribi?ew</user>
<link>http://www.stackoverflow.com//users/3832970/wiktor-stribi%c5%bcew</link>
<location>Warsaw, Poland</location>
<year_rep>4,948</year_rep>
<total_rep>158,134</total_rep>
<tag1>regex</tag1>
<tag2>javascript</tag2>
<tag3>c#</tag3>
</topusers>
<topusers>
<user>Darin Dimitrov</user>
<link>http://www.stackoverflow.com//users/29407/darin-dimitrov</link>
<location>Sofia, Bulgaria</location>
<year_rep>4,936</year_rep>
<total_rep>709,683</total_rep>
<tag1>c#</tag1>
<tag2>asp.net-mvc</tag2>
<tag3>asp.net-mvc-3</tag3>
</topusers>
<topusers>
<user>Eric Duminil</user>
<link>http://www.stackoverflow.com//users/6419007/eric-duminil</link>
<location></location>
<year_rep>4,854</year_rep>
<total_rep>12,557</total_rep>
<tag1>Ruby</tag1>
<tag2>Ruby-on-Rails</tag2>
<tag3>arrays</tag3>
</topusers>
<topusers>
<user>alecxe</user>
<link>http://www.stackoverflow.com//users/771848/alecxe</link>
<location>New York, United States</location>
<year_rep>4,723</year_rep>
<total_rep>233,368</total_rep>
<tag1>python</tag1>
<tag2>Selenium</tag2>
<tag3>protractor</tag3>
</topusers>
<topusers>
<user>Jean-François Fabre</user>
<link>http://www.stackoverflow.com//users/6451573/jean-fran%c3%a7ois-fabre</link>
<location>Toulouse, France</location>
<year_rep>4,526</year_rep>
<total_rep>30,027</total_rep>
<tag1>python</tag1>
<tag2>python-3.x</tag2>
<tag3>python-2.7</tag3>
</topusers>
<topusers>
<user>piRSquared</user>
<link>http://www.stackoverflow.com//users/2336654/pirsquared</link>
<location>Bellevue, WA, United States</location>
<year_rep>4,482</year_rep>
<total_rep>41,183</total_rep>
<tag1>pandas</tag1>
<tag2>python</tag2>
<tag3>dataframe</tag3>
</topusers>
<topusers>
<user>CommonsWare</user>
<link>http://www.stackoverflow.com//users/115145/commonsware</link>
<location>Who Wants to Know?</location>
<year_rep>4,475</year_rep>
<total_rep>616,135</total_rep>
<tag1>Android</tag1>
<tag2>Java</tag2>
<tag3>Android-intent</tag3>
</topusers>
<topusers>
<user>Quentin</user>
<link>http://www.stackoverflow.com//users/19068/quentin</link>
<location>United Kingdom</location>
<year_rep>4,464</year_rep>
<total_rep>509,365</total_rep>
<tag1>javascript</tag1>
<tag2>html</tag2>
<tag3>css</tag3>
</topusers>
<topusers>
<user>Jon Skeet</user>
<link>http://www.stackoverflow.com//users/22656/jon-skeet</link>
<location>Reading, United Kingdom</location>
<year_rep>4,348</year_rep>
<total_rep>921,690</total_rep>
<tag1>c#</tag1>
<tag2>Java</tag2>
<tag3>.net</tag3>
</topusers>
<topusers>
<user>Felix Kling</user>
<link>http://www.stackoverflow.com//users/218196/felix-kling</link>
<location>Sunnyvale, CA</location>
<year_rep>4,324</year_rep>
<total_rep>411,535</total_rep>
<tag1>javascript</tag1>
<tag2>jquery</tag2>
<tag3>asynchronous</tag3>
</topusers>
<topusers>
<user>matt</user>
<link>http://www.stackoverflow.com//users/341994/matt</link>
<location></location>
<year_rep>4,313</year_rep>
<total_rep>220,515</total_rep>
<tag1>Swift</tag1>
<tag2>ios</tag2>
<tag3>xcode</tag3>
</topusers>
<topusers>
<user>Psidom</user>
<link>http://www.stackoverflow.com//users/4983450/psidom</link>
<location>Atlanta, GA, United States</location>
<year_rep>4,236</year_rep>
<total_rep>36,950</total_rep>
<tag1>python</tag1>
<tag2>pandas</tag2>
<tag3>r</tag3>
</topusers>
<topusers>
<user>Martin R</user>
<link>http://www.stackoverflow.com//users/1187415/martin-r</link>
<location>Germany</location>
<year_rep>4,195</year_rep>
<total_rep>269,380</total_rep>
<tag1>Swift</tag1>
<tag2>ios</tag2>
<tag3>Swift3</tag3>
</topusers>
<topusers>
<user>Barmar</user>
<link>http://www.stackoverflow.com//users/1491895/barmar</link>
<location>Arlington, MA</location>
<year_rep>4,179</year_rep>
<total_rep>289,989</total_rep>
<tag1>javascript</tag1>
<tag2>php</tag2>
<tag3>jquery</tag3>
</topusers>
<topusers>
<user>Alexey Mezenin</user>
<link>http://www.stackoverflow.com//users/1227923/alexey-mezenin</link>
<location>??????</location>
<year_rep>4,142</year_rep>
<total_rep>31,602</total_rep>
<tag1>laravel</tag1>
<tag2>php</tag2>
<tag3>laravel-5.3</tag3>
</topusers>
<topusers>
<user>BalusC</user>
<link>http://www.stackoverflow.com//users/157882/balusc</link>
<location>Amsterdam, Netherlands</location>
<year_rep>4,046</year_rep>
<total_rep>703,046</total_rep>
<tag1>Java</tag1>
<tag2>jsf</tag2>
<tag3>servlets</tag3>
</topusers>
<topusers>
<user>GurV</user>
<link>http://www.stackoverflow.com//users/6348498/gurv</link>
<location></location>
<year_rep>4,016</year_rep>
<total_rep>7,932</total_rep>
<tag1>sql</tag1>
<tag2>mysql</tag2>
<tag3>sql-server</tag3>
</topusers>
<topusers>
<user>Nina Scholz</user>
<link>http://www.stackoverflow.com//users/1447675/nina-scholz</link>
<location>Berlin, Deutschland</location>
<year_rep>3,950</year_rep>
<total_rep>61,135</total_rep>
<tag1>javascript</tag1>
<tag2>arrays</tag2>
<tag3>object</tag3>
</topusers>
<topusers>
<user>JB Nizet</user>
<link>http://www.stackoverflow.com//users/571407/jb-nizet</link>
<location>Saint-Etienne, France</location>
<year_rep>3,923</year_rep>
<total_rep>418,780</total_rep>
<tag1>Java</tag1>
<tag2>hibernate</tag2>
<tag3>Java-8</tag3>
</topusers>
<topusers>
<user>Frank van Puffelen</user>
<link>http://www.stackoverflow.com//users/209103/frank-van-puffelen</link>
<location>San Francisco, CA</location>
<year_rep>3,920</year_rep>
<total_rep>86,520</total_rep>
<tag1>firebase</tag1>
<tag2>firebase-database</tag2>
<tag3>Android</tag3>
</topusers>
<topusers>
<user>dasblinkenlight</user>
<link>http://www.stackoverflow.com//users/335858/dasblinkenlight</link>
<location>United States</location>
<year_rep>3,886</year_rep>
<total_rep>475,813</total_rep>
<tag1>c#</tag1>
<tag2>Java</tag2>
<tag3>c++</tag3>
</topusers>
<topusers>
<user>Tim Biegeleisen</user>
<link>http://www.stackoverflow.com//users/1863229/tim-biegeleisen</link>
<location>Singapore</location>
<year_rep>3,814</year_rep>
<total_rep>77,211</total_rep>
<tag1>sql</tag1>
<tag2>mysql</tag2>
<tag3>Java</tag3>
</topusers>
<topusers>
<user>Greg Hewgill</user>
<link>http://www.stackoverflow.com//users/893/greg-hewgill</link>
<location>Christchurch, New Zealand</location>
<year_rep>3,796</year_rep>
<total_rep>529,137</total_rep>
<tag1>git</tag1>
<tag2>python</tag2>
<tag3>git-pull</tag3>
</topusers>
<topusers>
<user>unutbu</user>
<link>http://www.stackoverflow.com//users/190597/unutbu</link>
<location></location>
<year_rep>3,735</year_rep>
<total_rep>401,595</total_rep>
<tag1>python</tag1>
<tag2>pandas</tag2>
<tag3>numpy</tag3>
</topusers>
<topusers>
<user>Hans Passant</user>
<link>http://www.stackoverflow.com//users/17034/hans-passant</link>
<location>Madison, WI</location>
<year_rep>3,688</year_rep>
<total_rep>672,118</total_rep>
<tag1>c#</tag1>
<tag2>.net</tag2>
<tag3>winforms</tag3>
</topusers>
<topusers>
<user>Jonathan Leffler</user>
<link>http://www.stackoverflow.com//users/15168/jonathan-leffler</link>
<location>California, USA</location>
<year_rep>3,649</year_rep>
<total_rep>455,157</total_rep>
<tag1>c</tag1>
<tag2>bash</tag2>
<tag3>unix</tag3>
</topusers>
<topusers>
<user>paxdiablo</user>
<link>http://www.stackoverflow.com//users/14860/paxdiablo</link>
<location></location>
<year_rep>3,636</year_rep>
<total_rep>507,043</total_rep>
<tag1>c</tag1>
<tag2>c++</tag2>
<tag3>bash</tag3>
</topusers>
<topusers>
<user>Pranav C Balan</user>
<link>http://www.stackoverflow.com//users/3037257/pranav-c-balan</link>
<location>Ramanthali, Kannur, Kerala, India</location>
<year_rep>3,604</year_rep>
<total_rep>64,476</total_rep>
<tag1>javascript</tag1>
<tag2>jquery</tag2>
<tag3>html</tag3>
</topusers>
<topusers>
<user>Suragch</user>
<link>http://www.stackoverflow.com//users/3681880/suragch</link>
<location>Hohhot, China</location>
<year_rep>3,580</year_rep>
<total_rep>71,032</total_rep>
<tag1>Swift</tag1>
<tag2>ios</tag2>
<tag3>Android</tag3>
</topusers>
</stackoverflow>
Méthodes Python
import xml.etree.ElementTree as et
import pandas as pd
from io import StringIO
from lxml import etree as lxet
def read_xml_iterfind():
tree = et.parse('Input.xml')
data = []
inner = {}
for el in tree.iterfind('./*'):
for i in el.iterfind('*'):
inner[i.tag] = i.text
data.append(inner)
inner = {}
df = pd.DataFrame(data)
def read_xml_iterparse():
data = []
inner = {}
i = 1
for (ev, el) in et.iterparse(path):
if i <= 2:
first_tag = el.tag
if el.tag == first_tag and len(inner) != 0:
data.append(inner)
inner = {}
if el.text is not None and len(el.text.strip()) > 0:
inner[el.tag] = el.text
i += 1
df = pd.DataFrame(data)
def read_xml_lxml_xpath():
tree = lxet.parse('Input.xml')
data = []
inner = {}
for el in tree.xpath('/*/*'):
for i in el:
inner[i.tag] = i.text
data.append(inner)
inner = {}
df = pd.DataFrame(data)
def read_xml_lxml_xsl():
xml = lxet.parse('Input.xml')
xslstr = '''
<xsl:transform xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
<xsl:output version="1.0" encoding="UTF-8" indent="yes" method="text"/>
<xsl:strip-space elements="*"/>
<!-- HEADERS -->
<xsl:template match = "/*">
<xsl:for-each select="*[1]/*">
<xsl:value-of select="local-name()" />
<xsl:choose>
<xsl:when test="position() != last()">
<xsl:text>,</xsl:text>
</xsl:when>
<xsl:otherwise>
<xsl:text>
</xsl:text>
</xsl:otherwise>
</xsl:choose>
</xsl:for-each>
<xsl:apply-templates/>
</xsl:template>
<!-- DATA ROWS (COMMA-SEPARATED) -->
<xsl:template match="/*/*" priority="2">
<xsl:for-each select="*">
<xsl:if test="position() = 1">
<xsl:text>"</xsl:text>
</xsl:if>
<xsl:value-of select="." />
<xsl:choose>
<xsl:when test="position() != last()">
<xsl:text>","</xsl:text>
</xsl:when>
<xsl:otherwise>
<xsl:text>"
</xsl:text>
</xsl:otherwise>
</xsl:choose>
</xsl:for-each>
</xsl:template>
</xsl:transform>
'''
xsl = lxet.fromstring(xslstr)
transform = lxet.XSLT(xsl)
newdom = transform(xml)
df = pd.read_csv(StringIO(str(newdom)))
Timings (avec XML actuel et XML avec 25 fois les enfants (c'est-à-dire 900 enregistrements utilisateur StackOverflow)
# SHORTER FILE
python -mtimeit -s'import readxml_test_runs as test' 'test.read_xml_iterfind()'
100 loops, best of 3: 3.87 msec per loop
python -mtimeit -s'import readxml_test_runs as test' 'test.read_xml_iterparse()'
100 loops, best of 3: 5.5 msec per loop
python -mtimeit -s'import readxml_test_runs as test' 'test.read_xml_lxml_xpath()'
100 loops, best of 3: 3.86 msec per loop
python -mtimeit -s'import readxml_test_runs as test' 'test.read_xml_lxml_xsl()'
100 loops, best of 3: 5.68 msec per loop
# LARGER FILE
python -mtimeit -n'100' -s'import readxml_test_runs as test' 'test.read_xml_iterfind()'
100 loops, best of 3: 36 msec per loop
python -mtimeit -n'100' -s'import readxml_test_runs as test' 'test.read_xml_iterparse()'
100 loops, best of 3: 78.9 msec per loop
python -mtimeit -n'100' -s'import readxml_test_runs as test' 'test.read_xml_lxml_xpath()'
100 loops, best of 3: 32.7 msec per loop
python -mtimeit -n'100' -s'import readxml_test_runs as test' 'test.read_xml_lxml_xsl()'
100 loops, best of 3: 51.4 msec per loop
PERFORMANCE: Comment expliquez-vous l'itération lente souvent recommandée pour les fichiers plus volumineux car le fichier est analysé de manière itérative? Est-ce en partie dû aux vérifications de la logique if?
Je suppose que plus de code python le rendrait plus lent, car le code python est évalué à chaque fois. Avez-vous essayé un compilateur JIT comme pypy?
Si je supprime i
et n'utilise que first_tag
, Cela semble être un peu plus rapide, donc oui, c'est en partie dû aux vérifications de la logique if:
def read_xml_iterparse2(path):
data = []
inner = {}
first_tag = None
for (ev, el) in et.iterparse(path):
if not first_tag:
first_tag = el.tag
if el.tag == first_tag and len(inner) != 0:
data.append(inner)
inner = {}
if el.text is not None and len(el.text.strip()) > 0:
inner[el.tag] = el.text
df = pd.DataFrame(data)
%timeit read_xml_iterparse(path)
# 10 loops, best of 5: 33 ms per loop
%timeit read_xml_iterparse2(path)
# 10 loops, best of 5: 23 ms per loop
Je n'étais pas sûr d'avoir compris le but de la dernière vérification de if
, mais je ne sais pas non plus pourquoi vous voudriez perdre des éléments réservés aux espaces blancs. La suppression du dernier if
réduit systématiquement un peu de temps:
def read_xml_iterparse3(path):
data = []
inner = {}
first_tag = None
for (ev, el) in et.iterparse(path):
if not first_tag:
first_tag = el.tag
if el.tag == first_tag and len(inner) != 0:
data.append(inner)
inner = {}
inner[el.tag] = el.text
df = pd.DataFrame(data)
%timeit read_xml_iterparse(path)
# 10 loops, best of 5: 34.4 ms per loop
%timeit read_xml_iterparse2(path)
# 10 loops, best of 5: 24.5 ms per loop
%timeit read_xml_iterparse3(path)
# 10 loops, best of 5: 20.9 ms per loop
Maintenant, avec ou sans ces améliorations de performances, votre version iterparse semble produire une trame de données extra-large. Voici une version rapide et fonctionnelle:
def read_xml_iterparse5(path):
data = []
inner = {}
for (ev, el) in et.iterparse(path):
# /ending parents trigger a new row, and in our case .text is \n followed by spaces. it would be more reliable to pass 'topusers' to our read_xml_iterparse5 as the .tag to check
if el.text and el.text[0] == '\n':
# ignore /stackoverflow
if inner:
data.append(inner)
inner = {}
else:
inner[el.tag] = el.text
return pd.DataFrame(data)
print(read_xml_iterfind(path).shape)
# (900, 8)
print(read_xml_iterparse(path).shape)
# (7050, 8)
print(read_xml_lxml_xpath(path).shape)
# (900, 8)
print(read_xml_lxml_xsl(path).shape)
# (900, 8)
print(read_xml_iterparse5(path).shape)
# (900, 8)
%timeit read_xml_iterparse5(path)
# 10 loops, best of 5: 20.6 ms per loop
MÉMOIRE: La mémoire du processeur est-elle en corrélation avec les temporisations des appels d'E/S? XSLT et XPath 1.0 ont tendance à ne pas évoluer correctement avec des documents XML plus volumineux car le fichier entier doit être lu en mémoire pour être analysé.
Je ne suis pas totalement sûr de ce que vous entendez par "appels d'E/S", mais si votre document est suffisamment petit pour tenir dans le cache, alors tout sera beaucoup plus rapide car il n'éliminera pas beaucoup d'autres éléments du cache.
STRATÉGIE: La liste des dictionnaires est-elle une stratégie optimale pour l'appel Dataframe ()? Voir ces réponses intéressantes: version du générateur et une version définie par l'utilisateur iterwalk. Les deux listes ascendantes vers la trame de données.
Les listes utilisent moins de mémoire, donc selon le nombre de colonnes que vous avez, cela pourrait faire une différence notable. Bien sûr, cela nécessite alors que vos balises XML soient dans un ordre cohérent, ce qu'elles semblent être. L'appel DataFrame()
devrait également faire moins de travail, car il n'a pas à rechercher les clés dans le dict sur chaque ligne, pour déterminer quelle colonne si pour quelle valeur.