web-dev-qa-db-fra.com

Pandas: Soustraire deux colonnes de date et le résultat étant un entier

J'ai deux colonnes dans un cadre de données Pandas qui sont des dates.

Je cherche à soustraire une colonne d’une autre et le résultat étant la différence en nombre de jours sous forme d’entier.

Un coup d'oeil aux données:

df_test.head(10)
Out[20]: 
  First_Date Second Date
0 2016-02-09  2015-11-19
1 2016-01-06  2015-11-30
2        NaT  2015-12-04
3 2016-01-06  2015-12-08
4        NaT  2015-12-09
5 2016-01-07  2015-12-11
6        NaT  2015-12-12
7        NaT  2015-12-14
8 2016-01-06  2015-12-14
9        NaT  2015-12-15

J'ai créé une nouvelle colonne avec succès avec la différence:

df_test['Difference'] = df_test['First_Date'].sub(df_test['Second Date'], axis=0)
df_test.head()         
Out[22]: 
  First_Date Second Date  Difference
0 2016-02-09  2015-11-19     82 days
1 2016-01-06  2015-11-30     37 days
2        NaT  2015-12-04         NaT
3 2016-01-06  2015-12-08     29 days
4        NaT  2015-12-09         NaT

Cependant, je ne parviens pas à obtenir une version numérique du résultat:

df_test['Difference'] = df_test[['Difference']].apply(pd.to_numeric)     

df_test.head()
Out[25]: 
  First_Date Second Date    Difference
0 2016-02-09  2015-11-19  7.084800e+15
1 2016-01-06  2015-11-30  3.196800e+15
2        NaT  2015-12-04           NaN
3 2016-01-06  2015-12-08  2.505600e+15
4        NaT  2015-12-09           NaN
19
Kevin

Vous pouvez diviser la colonne de dtypetimedelta par np.timedelta64(1, 'D'), mais la sortie n'est pas int, mais float, car NaN valeurs :

df_test['Difference'] = df_test['Difference'] / np.timedelta64(1, 'D')
print (df_test)
  First_Date Second Date  Difference
0 2016-02-09  2015-11-19        82.0
1 2016-01-06  2015-11-30        37.0
2        NaT  2015-12-04         NaN
3 2016-01-06  2015-12-08        29.0
4        NaT  2015-12-09         NaN
5 2016-01-07  2015-12-11        27.0
6        NaT  2015-12-12         NaN
7        NaT  2015-12-14         NaN
8 2016-01-06  2015-12-14        23.0
9        NaT  2015-12-15         NaN

Conversion de fréquence .

28
jezrael

Que diriez-vous:

df_test['Difference'] = (df_test['First_Date'] - df_test['Second Date']).dt.days

Cela retournera la différence comme int.

29
Prayson W. Daniel

Vous pouvez utiliser le module datetime pour aider ici. De plus, en guise de remarque, une simple soustraction de date devrait fonctionner comme suit:

import datetime as dt
import numpy as np
import pandas as pd

#Assume we have df_test:
In [222]: df_test
Out[222]: 
   first_date second_date
0  2016-01-31  2015-11-19
1  2016-02-29  2015-11-20
2  2016-03-31  2015-11-21
3  2016-04-30  2015-11-22
4  2016-05-31  2015-11-23
5  2016-06-30  2015-11-24
6         NaT  2015-11-25
7         NaT  2015-11-26
8  2016-01-31  2015-11-27
9         NaT  2015-11-28
10        NaT  2015-11-29
11        NaT  2015-11-30
12 2016-04-30  2015-12-01
13        NaT  2015-12-02
14        NaT  2015-12-03
15 2016-04-30  2015-12-04
16        NaT  2015-12-05
17        NaT  2015-12-06

In [223]: df_test['Difference'] = df_test['first_date'] - df_test['second_date'] 

In [224]: df_test
Out[224]: 
   first_date second_date  Difference
0  2016-01-31  2015-11-19     73 days
1  2016-02-29  2015-11-20    101 days
2  2016-03-31  2015-11-21    131 days
3  2016-04-30  2015-11-22    160 days
4  2016-05-31  2015-11-23    190 days
5  2016-06-30  2015-11-24    219 days
6         NaT  2015-11-25         NaT
7         NaT  2015-11-26         NaT
8  2016-01-31  2015-11-27     65 days
9         NaT  2015-11-28         NaT
10        NaT  2015-11-29         NaT
11        NaT  2015-11-30         NaT
12 2016-04-30  2015-12-01    151 days
13        NaT  2015-12-02         NaT
14        NaT  2015-12-03         NaT
15 2016-04-30  2015-12-04    148 days
16        NaT  2015-12-05         NaT
17        NaT  2015-12-06         NaT

Maintenant, remplacez type par datetime.timedelta, puis utilisez la méthode .days sur des objets timedelta valides.

In [226]: df_test['Diffference'] = df_test['Difference'].astype(dt.timedelta).map(lambda x: np.nan if pd.isnull(x) else x.days)

In [227]: df_test
Out[227]: 
   first_date second_date  Difference  Diffference
0  2016-01-31  2015-11-19     73 days           73
1  2016-02-29  2015-11-20    101 days          101
2  2016-03-31  2015-11-21    131 days          131
3  2016-04-30  2015-11-22    160 days          160
4  2016-05-31  2015-11-23    190 days          190
5  2016-06-30  2015-11-24    219 days          219
6         NaT  2015-11-25         NaT          NaN
7         NaT  2015-11-26         NaT          NaN
8  2016-01-31  2015-11-27     65 days           65
9         NaT  2015-11-28         NaT          NaN
10        NaT  2015-11-29         NaT          NaN
11        NaT  2015-11-30         NaT          NaN
12 2016-04-30  2015-12-01    151 days          151
13        NaT  2015-12-02         NaT          NaN
14        NaT  2015-12-03         NaT          NaN
15 2016-04-30  2015-12-04    148 days          148
16        NaT  2015-12-05         NaT          NaN
17        NaT  2015-12-06         NaT          NaN

J'espère que ça t'as aidé.

11
clocker