Étant donné le dataframe suivant
In [31]: Rand = np.random.RandomState(1)
df = pd.DataFrame({'A': ['foo', 'bar', 'baz'] * 2,
'B': Rand.randn(6),
'C': Rand.rand(6) > .5})
In [32]: df
Out[32]: A B C
0 foo 1.624345 False
1 bar -0.611756 True
2 baz -0.528172 False
3 foo -1.072969 True
4 bar 0.865408 False
5 baz -2.301539 True
Je voudrais le trier en groupes (A
) par la somme agrégée de B
, puis par la valeur dans C
(non agrégé). Donc, fondamentalement, obtenir l'ordre des groupes A
avec
In [28]: df.groupby('A').sum().sort('B')
Out[28]: B C
A
baz -2.829710 1
bar 0.253651 1
foo 0.551377 1
Et ensuite par True/False, pour que cela ressemble finalement à ceci:
In [30]: df.ix[[5, 2, 1, 4, 3, 0]]
Out[30]: A B C
5 baz -2.301539 True
2 baz -0.528172 False
1 bar -0.611756 True
4 bar 0.865408 False
3 foo -1.072969 True
0 foo 1.624345 False
Comment cela peut-il être fait?
Groupby A:
In [0]: grp = df.groupby('A')
Au sein de chaque groupe, additionnez sur B et diffusez les valeurs en utilisant transform. Puis triez par B:
In [1]: grp[['B']].transform(sum).sort('B')
Out[1]:
B
2 -2.829710
5 -2.829710
1 0.253651
4 0.253651
0 0.551377
3 0.551377
Indexez le df d'origine en passant l'index par le haut. Cela réordonnera les valeurs A en additionnant la somme des valeurs B:
In [2]: sort1 = df.ix[grp[['B']].transform(sum).sort('B').index]
In [3]: sort1
Out[3]:
A B C
2 baz -0.528172 False
5 baz -2.301539 True
1 bar -0.611756 True
4 bar 0.865408 False
0 foo 1.624345 False
3 foo -1.072969 True
Enfin, triez les valeurs 'C' dans les groupes de 'A' en utilisant le sort=False
option pour conserver l’ordre de tri A à partir de l’étape 1:
In [4]: f = lambda x: x.sort('C', ascending=False)
In [5]: sort2 = sort1.groupby('A', sort=False).apply(f)
In [6]: sort2
Out[6]:
A B C
A
baz 5 baz -2.301539 True
2 baz -0.528172 False
bar 1 bar -0.611756 True
4 bar 0.865408 False
foo 3 foo -1.072969 True
0 foo 1.624345 False
Nettoyez l’index df en utilisant reset_index
avec drop=True
:
In [7]: sort2.reset_index(0, drop=True)
Out[7]:
A B C
5 baz -2.301539 True
2 baz -0.528172 False
1 bar -0.611756 True
4 bar 0.865408 False
3 foo -1.072969 True
0 foo 1.624345 False
Voici une approche plus concise ...
df['a_bsum'] = df.groupby('A')['B'].transform(sum)
df.sort(['a_bsum','C'], ascending=[True, False]).drop('a_bsum', axis=1)
La première ligne ajoute une colonne au bloc de données avec la somme par groupe. La deuxième ligne effectue le tri puis supprime la colonne supplémentaire.
Résultat:
A B C
5 baz -2.301539 True
2 baz -0.528172 False
1 bar -0.611756 True
4 bar 0.865408 False
3 foo -1.072969 True
0 foo 1.624345 False
NOTE: sort
est obsolète, utilisez sort_values
au lieu
Une façon de faire est d'insérer une colonne fictive avec les sommes afin de trier:
In [10]: sum_B_over_A = df.groupby('A').sum().B
In [11]: sum_B_over_A
Out[11]:
A
bar 0.253652
baz -2.829711
foo 0.551376
Name: B
in [12]: df['sum_B_over_A'] = df.A.apply(sum_B_over_A.get_value)
In [13]: df
Out[13]:
A B C sum_B_over_A
0 foo 1.624345 False 0.551376
1 bar -0.611756 True 0.253652
2 baz -0.528172 False -2.829711
3 foo -1.072969 True 0.551376
4 bar 0.865408 False 0.253652
5 baz -2.301539 True -2.829711
In [14]: df.sort(['sum_B_over_A', 'A', 'B'])
Out[14]:
A B C sum_B_over_A
5 baz -2.301539 True -2.829711
2 baz -0.528172 False -2.829711
1 bar -0.611756 True 0.253652
4 bar 0.865408 False 0.253652
3 foo -1.072969 True 0.551376
0 foo 1.624345 False 0.551376
et vous abandonneriez peut-être la rangée fictive
In [15]: df.sort(['sum_B_over_A', 'A', 'B']).drop('sum_B_over_A', axis=1)
Out[15]:
A B C
5 baz -2.301539 True
2 baz -0.528172 False
1 bar -0.611756 True
4 bar 0.865408 False
3 foo -1.072969 True
0 foo 1.624345 False