web-dev-qa-db-fra.com

Pourquoi scipy.optimize.curve_fit ne correspond pas aux données?

J'ai essayé d'adapter une exponentielle à certaines données pendant un certain temps en utilisant scipy.optimize.curve_fit, mais j'ai vraiment de la difficulté. Je ne vois vraiment aucune raison pour laquelle cela ne fonctionnerait pas, mais cela produit juste une ligne droite, aucune idée pourquoi!

Toute aide serait très appréciée

from __future__ import division
import numpy
from scipy.optimize import curve_fit
import matplotlib.pyplot as pyplot

def func(x,a,b,c):
   return a*numpy.exp(-b*x)-c


yData = numpy.load('yData.npy')
xData = numpy.load('xData.npy')

trialX = numpy.linspace(xData[0],xData[-1],1000)

# Fit a polynomial 
fitted = numpy.polyfit(xData, yData, 10)[::-1]
y = numpy.zeros(len(trailX))
for i in range(len(fitted)):
   y += fitted[i]*trialX**i

# Fit an exponential
popt, pcov = curve_fit(func, xData, yData)
yEXP = func(trialX, *popt)

pyplot.figure()
pyplot.plot(xData, yData, label='Data', marker='o')
pyplot.plot(trialX, yEXP, 'r-',ls='--', label="Exp Fit")
pyplot.plot(trialX,   y, label = '10 Deg Poly')
pyplot.legend()
pyplot.show()

enter image description here

xData = [1e-06, 2e-06, 3e-06, 4e-06,
5e-06, 6e-06, 7e-06, 8e-06,
9e-06, 1e-05, 2e-05, 3e-05,
4e-05, 5e-05, 6e-05, 7e-05,
8e-05, 9e-05, 0.0001, 0.0002,
0.0003, 0.0004, 0.0005, 0.0006,
0.0007, 0.0008, 0.0009, 0.001,
0.002, 0.003, 0.004, 0.005,
0.006, 0.007, 0.008, 0.009, 0.01]

yData = 
[6.37420666067e-09, 1.13082012115e-08,
1.52835756975e-08, 2.19214493931e-08, 2.71258852882e-08, 3.38556130078e-08, 3.55765277358e-08,
4.13818145846e-08, 4.72543475372e-08, 4.85834751151e-08, 9.53876562077e-08, 1.45110636413e-07,
1.83066627931e-07, 2.10138415308e-07, 2.43503982686e-07, 2.72107045549e-07, 3.02911771395e-07,
3.26499455951e-07, 3.48319349445e-07, 5.13187669283e-07, 5.98480176303e-07, 6.57028222701e-07,
6.98347073045e-07, 7.28699930335e-07, 7.50686502279e-07, 7.7015576866e-07, 7.87147246927e-07,
7.99607141001e-07, 8.61398763228e-07, 8.84272900407e-07, 8.96463883243e-07, 9.04105135329e-07,
9.08443443149e-07, 9.12391264185e-07, 9.150842683e-07, 9.16878548643e-07, 9.18389990067e-07]
21
user1696811

Les algorithmes numériques ont tendance à mieux fonctionner lorsqu'ils ne sont pas alimentés en nombres extrêmement petits (ou grands).

Dans ce cas, le graphique montre que vos données ont des valeurs x et y extrêmement faibles. Si vous les mettez à l'échelle, l'ajustement est remarquable:

xData = np.load('xData.npy')*10**5
yData = np.load('yData.npy')*10**5

from __future__ import division

import os
os.chdir(os.path.expanduser('~/tmp'))

import numpy as np
import scipy.optimize as optimize
import matplotlib.pyplot as plt

def func(x,a,b,c):
   return a*np.exp(-b*x)-c


xData = np.load('xData.npy')*10**5
yData = np.load('yData.npy')*10**5

print(xData.min(), xData.max())
print(yData.min(), yData.max())

trialX = np.linspace(xData[0], xData[-1], 1000)

# Fit a polynomial 
fitted = np.polyfit(xData, yData, 10)[::-1]
y = np.zeros(len(trialX))
for i in range(len(fitted)):
   y += fitted[i]*trialX**i

# Fit an exponential
popt, pcov = optimize.curve_fit(func, xData, yData)
print(popt)
yEXP = func(trialX, *popt)

plt.figure()
plt.plot(xData, yData, label='Data', marker='o')
plt.plot(trialX, yEXP, 'r-',ls='--', label="Exp Fit")
plt.plot(trialX, y, label = '10 Deg Poly')
plt.legend()
plt.show()

enter image description here

Notez qu'après le redimensionnement de xData et yData, les paramètres renvoyés par curve_fit doit également être redimensionné. Dans ce cas, a, b et c chacun doit être divisé par 10 ** 5 pour obtenir les paramètres ajustés pour les données d'origine.


Une objection que vous pourriez avoir à ce qui précède est que la mise à l'échelle doit être choisie plutôt "soigneusement". (Lire: Tous les choix d'échelle raisonnables ne fonctionnent pas!)

Vous pouvez améliorer la robustesse de curve_fit en fournissant une estimation initiale raisonnable des paramètres. Habituellement, vous avez une certaine a priori connaissance des données qui peut motiver des suppositions de type enveloppe approximative/arrière de l'enveloppe pour des valeurs de paramètre raisonnables.

Par exemple, appeler curve_fit avec

guess = (-1, 0.1, 0)
popt, pcov = optimize.curve_fit(func, xData, yData, guess)

contribue à améliorer la gamme d'échelles sur lesquelles curve_fit réussit dans ce cas.

39
unutbu

Une (légère) amélioration de cette solution, ne tenant pas compte de la connaissance a priori des données, pourrait être la suivante: prendre la moyenne inverse de l'ensemble de données et l'utiliser comme "facteur d'échelle" à transmettre à la moindre valeur sous-jacente () appelé par curve_fit (). Cela permet à l'installateur de travailler et renvoie les paramètres sur l'échelle d'origine des données.

La ligne pertinente est:

popt, pcov = curve_fit(func, xData, yData)

qui devient:

popt, pcov = curve_fit(func, xData, yData,
    diag=(1./xData.mean(),1./yData.mean()) )

Voici l'exemple complet qui produit cette image:

curve_fit without manually rescaling the data or results

from __future__ import division
import numpy
from scipy.optimize import curve_fit
import matplotlib.pyplot as pyplot

def func(x,a,b,c):
   return a*numpy.exp(-b*x)-c


xData = numpy.array([1e-06, 2e-06, 3e-06, 4e-06, 5e-06, 6e-06,
7e-06, 8e-06, 9e-06, 1e-05, 2e-05, 3e-05, 4e-05, 5e-05, 6e-05,
7e-05, 8e-05, 9e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005,
0.0006, 0.0007, 0.0008, 0.0009, 0.001, 0.002, 0.003, 0.004, 0.005
, 0.006, 0.007, 0.008, 0.009, 0.01])

yData = numpy.array([6.37420666067e-09, 1.13082012115e-08,
1.52835756975e-08, 2.19214493931e-08, 2.71258852882e-08,
3.38556130078e-08, 3.55765277358e-08, 4.13818145846e-08,
4.72543475372e-08, 4.85834751151e-08, 9.53876562077e-08,
1.45110636413e-07, 1.83066627931e-07, 2.10138415308e-07,
2.43503982686e-07, 2.72107045549e-07, 3.02911771395e-07,
3.26499455951e-07, 3.48319349445e-07, 5.13187669283e-07,
5.98480176303e-07, 6.57028222701e-07, 6.98347073045e-07,
7.28699930335e-07, 7.50686502279e-07, 7.7015576866e-07,
7.87147246927e-07, 7.99607141001e-07, 8.61398763228e-07,
8.84272900407e-07, 8.96463883243e-07, 9.04105135329e-07,
9.08443443149e-07, 9.12391264185e-07, 9.150842683e-07,
9.16878548643e-07, 9.18389990067e-07])

trialX = numpy.linspace(xData[0],xData[-1],1000)

# Fit a polynomial
fitted = numpy.polyfit(xData, yData, 10)[::-1]
y = numpy.zeros(len(trialX))
for i in range(len(fitted)):
   y += fitted[i]*trialX**i

# Fit an exponential
popt, pcov = curve_fit(func, xData, yData,
    diag=(1./xData.mean(),1./yData.mean()) )
yEXP = func(trialX, *popt)

pyplot.figure()
pyplot.plot(xData, yData, label='Data', marker='o')
pyplot.plot(trialX, yEXP, 'r-',ls='--', label="Exp Fit")
pyplot.plot(trialX,   y, label = '10 Deg Poly')
pyplot.legend()
pyplot.show()
25
Johann