web-dev-qa-db-fra.com

Python: Comment évaluer les résidus dans StatsModels?

Je veux évaluer les résidus: (y-hat y).

Je sais comment faire ca:

df = pd.read_csv('myFile', delim_whitespace = True, header = None)
df.columns = ['column1', 'column2']
y, X = ps.dmatrices('column1 ~ column2',data = df, return_type = 'dataframe')
model = sm.OLS(y,X)
results = model.fit()
predictedValues = results.predict()
#print predictedValues
yData = df.as_matrix(columns = ['column1'])
res = yData - predictedValues

Je me demande s'il existe une méthode pour ce faire (?).

9
DanielTheRocketMan

C'est stocké dans l'attribut resid de la classe Résultats

De même, il existe une méthode results.fittedvalues, Vous n'avez donc pas besoin de la results.predict().

19
TomAugspurger