Dans mon code, je prends le logarithme de deux séries de données et je les trace. Je voudrais changer chaque valeur de tick de l'axe des x en la portant à la puissance de e (anti-logarithme du logarithme naturel).
En d'autres termes. Je veux représenter graphiquement les logarithmes des deux séries mais avoir l'axe des x dans les niveaux.
Voici le code que j'utilise.
from pylab import scatter
import pylab
import matplotlib.pyplot as plt
import pandas as pd
from pandas import Series, DataFrame
import numpy as np
file_name = '/Users/joedanger/Desktop/Python/scatter_python.csv'
data = DataFrame(pd.read_csv(file_name))
y = np.log(data['o_value'], dtype='float64')
x = np.log(data['time_diff_day'], dtype='float64')
fig = plt.figure()
plt.scatter(x, y, c='blue', alpha=0.05, edgecolors='none')
fig.suptitle('test title', fontsize=20)
plt.xlabel('time_diff_day', fontsize=18)
plt.ylabel('o_value', fontsize=16)
plt.xticks([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4])
plt.grid(True)
pylab.show()
laissez matplotlib
prendre le journal pour vous:
fig = plt.figure()
ax = plt.gca()
ax.scatter(data['o_value'] ,data['time_diff_day'] , c='blue', alpha=0.05, edgecolors='none')
ax.set_yscale('log')
ax.set_xscale('log')
Si vous utilisez tous les mêmes marqueurs de taille et de couleur, il est plus rapide d'utiliser plot
fig = plt.figure()
ax = plt.gca()
ax.plot(data['o_value'] ,data['time_diff_day'], 'o', c='blue', alpha=0.05, markeredgecolor='none')
ax.set_yscale('log')
ax.set_xscale('log')