J'ai la partie de code suivante pour un réseau de neurones de convolution:
import numpy as np
import matplotlib.pyplot as plt
import cifar_tools
import tensorflow as tf
data, labels = cifar_tools.read_data('C:\\Users\\abc\\Desktop\\temp')
x = tf.placeholder(tf.float32, [None, 150 * 150])
y = tf.placeholder(tf.float32, [None, 2])
w1 = tf.Variable(tf.random_normal([5, 5, 1, 64]))
b1 = tf.Variable(tf.random_normal([64]))
w2 = tf.Variable(tf.random_normal([5, 5, 64, 64]))
b2 = tf.Variable(tf.random_normal([64]))
w3 = tf.Variable(tf.random_normal([6*6*64, 1024]))
b3 = tf.Variable(tf.random_normal([1024]))
w_out = tf.Variable(tf.random_normal([1024, 2]))
b_out = tf.Variable(tf.random_normal([2]))
def conv_layer(x,w,b):
conv = tf.nn.conv2d(x,w,strides=[1,1,1,1], padding = 'SAME')
conv_with_b = tf.nn.bias_add(conv,b)
conv_out = tf.nn.relu(conv_with_b)
return conv_out
def maxpool_layer(conv,k=2):
return tf.nn.max_pool(conv, ksize=[1,k,k,1], strides=[1,k,k,1], padding='SAME')
def model():
x_reshaped = tf.reshape(x, shape=[-1,150,150,1])
conv_out1 = conv_layer(x_reshaped, w1, b1)
maxpool_out1 = maxpool_layer(conv_out1)
norm1 = tf.nn.lrn(maxpool_out1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75)
conv_out2 = conv_layer(norm1, w2, b2)
maxpool_out2 = maxpool_layer(conv_out2)
norm2 = tf.nn.lrn(maxpool_out2, 4, bias=1.0, alpha=0.001/9.0, beta=0.75)
maxpool_reshaped = tf.reshape(maxpool_out2, [-1,w3.get_shape().as_list()[0]])
local = tf.add(tf.matmul(maxpool_reshaped, w3), b3)
local_out = tf.nn.relu(local)
out = tf.add(tf.matmul(local_out, w_out), b_out)
return out
model_op = model()
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(model_op, y))
train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
correct_pred = tf.equal(tf.argmax(model_op, 1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred,tf.float32))
Je lis des images en niveaux de gris 150x150
, mais je ne comprends pas l'erreur suivante:
Epoch 0
Traceback (most recent call last):
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1021, in _do_call
return fn(*args)
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1003, in _run_fn
status, run_metadata)
File "C:\Python35\lib\contextlib.py", line 66, in __exit__
next(self.gen)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 469, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Input to reshape is a tensor with 92416 values, but the requested shape requires a multiple of 2304
[[Node: Reshape_1 = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](MaxPool_1, Reshape_1/shape)]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "cnn.py", line 70, in <module>
_, accuracy_val = sess.run([train_op, accuracy], feed_dict={x: batch_data, y: batch_onehot_vals})
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 766, in run
run_metadata_ptr)
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 964, in _run
feed_dict_string, options, run_metadata)
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1014, in _do_run
target_list, options, run_metadata)
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1034, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Input to reshape is a tensor with 92416 values, but the requested shape requires a multiple of 2304
[[Node: Reshape_1 = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](MaxPool_1, Reshape_1/shape)]]
Caused by op 'Reshape_1', defined at:
File "cnn.py", line 50, in <module>
model_op = model()
File "cnn.py", line 43, in model
maxpool_reshaped = tf.reshape(maxpool_out2, [-1,w3.get_shape().as_list()[0]])
File "C:\Python35\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 2448, in reshape
name=name)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 759, in apply_op
op_def=op_def)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 2240, in create_op
original_op=self._default_original_op, op_def=op_def)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 1128, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): Input to reshape is a tensor with 92416 values, but the requested shape requires a multiple of 2304
[[Node: Reshape_1 = Reshape[T=DT_FLOAT, Tshape=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](MaxPool_1, Reshape_1/shape)]]
EDIT-1
Vous avez cette nouvelle erreur après avoir modifié en fonction de ces modifications:
x_reshaped = tf.reshape(x, shape=[-1,150,150,1])
batch_size = x_reshaped.get_shape().as_list()[0]
... Same code as above ...
maxpool_reshaped = tf.reshape(maxpool_out2, [batch_size, -1])
Erreur:
Traceback (most recent call last):
File "cnn.py", line 52, in <module>
model_op = model()
File "cnn.py", line 45, in model
maxpool_reshaped = tf.reshape(maxpool_out2, [batch_size, -1])
File "C:\Python35\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 2448, in reshape
name=name)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 493, in apply_op
raise err
File "C:\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 490, in apply_op
preferred_dtype=default_dtype)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 669, in convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\constant_op.py", line 176, in _constant_tensor_conversion_function
return constant(v, dtype=dtype, name=name)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\constant_op.py", line 165, in constant
tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape, verify_shape=verify_shape))
File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_util.py", line 441, in make_tensor_proto
tensor_proto.string_val.extend([compat.as_bytes(x) for x in proto_values])
File "C:\Python35\lib\site-packages\tensorflow\python\framework\tensor_util.py", line 441, in <listcomp>
tensor_proto.string_val.extend([compat.as_bytes(x) for x in proto_values])
File "C:\Python35\lib\site-packages\tensorflow\python\util\compat.py", line 65, in as_bytes
(bytes_or_text,))
TypeError: Expected binary or unicode string, got None
EDIT-2
Après avoir effectué les modifications suivantes (en plus de supprimer batch_size
:
w3 = tf.Variable(tf.random_normal([361, 256]))
...
...
w_out = tf.Variable(tf.random_normal([256, 2]))
J'ai l'erreur suivante:
Epoch 0
W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\framework\op_kernel.cc:975] Invalid argument: logits and labels must be same size: logits_size=[256,2] labels_size=[1,2]
[[Node: SoftmaxCrossEntropyWithLogits = SoftmaxCrossEntropyWithLogits[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Reshape_2, Reshape_3)]]
Traceback (most recent call last):
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1021, in _do_call
return fn(*args)
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1003, in _run_fn
status, run_metadata)
File "C:\Python35\lib\contextlib.py", line 66, in __exit__
next(self.gen)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 469, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: logits and labels must be same size: logits_size=[256,2] labels_size=[1,2]
[[Node: SoftmaxCrossEntropyWithLogits = SoftmaxCrossEntropyWithLogits[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Reshape_2, Reshape_3)]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "cnn.py", line 73, in <module>
_, accuracy_val = sess.run([train_op, accuracy], feed_dict={x: batch_data, y: batch_onehot_vals})
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 766, in run
run_metadata_ptr)
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 964, in _run
feed_dict_string, options, run_metadata)
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1014, in _do_run
target_list, options, run_metadata)
File "C:\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1034, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: logits and labels must be same size: logits_size=[256,2] labels_size=[1,2]
[[Node: SoftmaxCrossEntropyWithLogits = SoftmaxCrossEntropyWithLogits[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Reshape_2, Reshape_3)]]
Caused by op 'SoftmaxCrossEntropyWithLogits', defined at:
File "cnn.py", line 55, in <module>
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(model_op, y))
File "C:\Python35\lib\site-packages\tensorflow\python\ops\nn_ops.py", line 1449, in softmax_cross_entropy_with_logits
precise_logits, labels, name=name)
File "C:\Python35\lib\site-packages\tensorflow\python\ops\gen_nn_ops.py", line 2265, in _softmax_cross_entropy_with_logits
features=features, labels=labels, name=name)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 759, in apply_op
op_def=op_def)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 2240, in create_op
original_op=self._default_original_op, op_def=op_def)
File "C:\Python35\lib\site-packages\tensorflow\python\framework\ops.py", line 1128, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): logits and labels must be same size: logits_size=[256,2] labels_size=[1,2]
[[Node: SoftmaxCrossEntropyWithLogits = SoftmaxCrossEntropyWithLogits[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Reshape_2, Reshape_3)]]
EDIT-3
Voici comment se présente le fichier binaire (décapé) [libellé, nom de fichier, données]:
[array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]), array(['1.jpg', '10.jpg', '2.jpg', '3.jpg', '4.jpg', '5.jpg', '6.jpg',
'7.jpg', '8.jpg', '9.jpg'],
dtype='<U6'), array([[142, 138, 134, ..., 128, 125, 122],
[151, 151, 149, ..., 162, 159, 157],
[120, 121, 122, ..., 132, 128, 122],
...,
[179, 175, 177, ..., 207, 205, 203],
[126, 129, 130, ..., 134, 130, 134],
[165, 170, 175, ..., 193, 193, 187]])]
Comment puis-je résoudre ce problème?
Merci.
Venons-en à votre erreur initiale:
L'entrée pour remodeler est un tenseur avec 92416 valeurs, mais la forme demandée nécessite un multiple de 2304
En effet, vous adaptez votre code à partir d'un code avec la taille de l'image d'origine 24 * 24. La forme du tenseur après deux couches de convolution et deux couches de max-pooling est [-1, 6, 6, 64]. Cependant, comme la forme de votre image d'entrée est 150 * 150, la forme intermédiaire devient [-1, 38, 38, 64].
essayez de changer w3
w3 = tf.Variable (tf.random_normal ([38 * 38 * 64, 1024]))
Vous devriez toujours garder un œil sur votre flux de forme de tenseur.
L'erreur se passe ici:
maxpool_reshaped = tf.reshape(maxpool_out2, [-1,w3.get_shape().as_list()[0]])
Comme il est dit: L'entrée pour remodeler est un tenseur avec 92416 valeurs, mais la forme demandée nécessite un multiple de 2304
Sens
w3.get_shape (). as_list () [0] = 2304
et
maxpool_out2 a 92416 valeurs
mais 92416/2304 a un reste fractionnel, de sorte que python ne peut pas contenir le reste de manière égale dans "-1".
Donc, vous devez revérifier les formes de w3 et ce que vous attendez de lui.
Proposition alternative mise à jour:
x_reshaped = tf.reshape(x, shape=[-1,150,150,1])
batch_size = x_reshaped.get_shape().as_list()[0]
... Same code as above ...
maxpool_reshaped = tf.reshape(maxpool_out2, [batch_size, -1])
J'ai fait face au même problème, j'ai essayé d'imprimer la couche de tenseur pour l'image donnée de 300 * 200 dans CNN.
Tensor("add_35:0", shape=(?, 300, 200, 16), dtype=float32)
Tensor("MaxPool_21:0", shape=(?, 100, 150, 16), dtype=float32)
Tensor("MaxPool_22:0", shape=(?, 75, 50, 32), dtype=float32)
Tensor("MaxPool_23:0", shape=(?, 38, 25, 64), dtype=float32)
En divisant chaque couche par 2 pour chaque couche, dans la couche entièrement connectée, nous pouvons essayer avec 38 * 25 * 64 (sortie de la couche précédente)
'w_fc_layer' : tf.Variable(tf.random_normal([38*38*64,1024]))