web-dev-qa-db-fra.com

PyTorch - Comment désactiver le décrochage en mode évaluation

C'est le modèle que j'ai défini, c'est un simple lstm avec 2 couches entièrement connectées.

import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

class mylstm(nn.Module):
    def __init__(self,input_dim, output_dim, hidden_dim,linear_dim):
        super(mylstm, self).__init__()
        self.hidden_dim=hidden_dim
        self.lstm=nn.LSTMCell(input_dim,self.hidden_dim)
        self.linear1=nn.Linear(hidden_dim,linear_dim)
        self.linear2=nn.Linear(linear_dim,output_dim)
    def forward(self, input):
        out,_=self.lstm(input)
        out=nn.Dropout(p=0.3)(out)
        out=self.linear1(out)
        out=nn.Dropout(p=0.3)(out)
        out=self.linear2(out)
        return out

x_train Et x_val Sont des données flottantes avec la forme (4478,30), Tandis que y_train Et y_val Sont flottantes df avec la forme (4478,10)

    x_train.head()
Out[271]: 
       0       1       2       3    ...        26      27      28      29
0  1.6110  1.6100  1.6293  1.6370   ...    1.6870  1.6925  1.6950  1.6905
1  1.6100  1.6293  1.6370  1.6530   ...    1.6925  1.6950  1.6905  1.6960
2  1.6293  1.6370  1.6530  1.6537   ...    1.6950  1.6905  1.6960  1.6930
3  1.6370  1.6530  1.6537  1.6620   ...    1.6905  1.6960  1.6930  1.6955
4  1.6530  1.6537  1.6620  1.6568   ...    1.6960  1.6930  1.6955  1.7040

[5 rows x 30 columns]

x_train.shape
Out[272]: (4478, 30)

Définissez la variable et faites une seule fois bp, je peux découvrir que la perte de vaildation est de 1,4941

model=mylstm(30,10,200,100).double()
from torch import optim
optimizer=optim.RMSprop(model.parameters(), lr=0.001, alpha=0.9)
criterion=nn.L1Loss()
input_=torch.autograd.Variable(torch.from_numpy(np.array(x_train)))
target=torch.autograd.Variable(torch.from_numpy(np.array(y_train)))
input2_=torch.autograd.Variable(torch.from_numpy(np.array(x_val)))
target2=torch.autograd.Variable(torch.from_numpy(np.array(y_val)))
optimizer.zero_grad()
output=model(input_)
loss=criterion(output,target)
loss.backward()
optimizer.step()
moniter=criterion(model(input2_),target2)

moniter
Out[274]: tensor(1.4941, dtype=torch.float64, grad_fn=<L1LossBackward>)

Mais j'ai appelé à nouveau la fonction avant, j'obtiens un numéro différent en raison du caractère aléatoire du décrochage

moniter=criterion(model(input2_),target2)
moniter
Out[275]: tensor(1.4943, dtype=torch.float64, grad_fn=<L1LossBackward>)

que dois-je faire pour éliminer tous les abandons dans la phrase de prédiction?

J'ai essayé eval():

moniter=criterion(model.eval()(input2_),target2)
moniter
Out[282]: tensor(1.4942, dtype=torch.float64, grad_fn=<L1LossBackward>)

moniter=criterion(model.eval()(input2_),target2)
moniter
Out[283]: tensor(1.4945, dtype=torch.float64, grad_fn=<L1LossBackward>)

Et passez un paramètre supplémentaire p pour contrôler le décrochage:

import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class mylstm(nn.Module):
    def __init__(self,input_dim, output_dim, hidden_dim,linear_dim,p):
        super(mylstm, self).__init__()
        self.hidden_dim=hidden_dim
        self.lstm=nn.LSTMCell(input_dim,self.hidden_dim)
        self.linear1=nn.Linear(hidden_dim,linear_dim)
        self.linear2=nn.Linear(linear_dim,output_dim)
    def forward(self, input,p):
        out,_=self.lstm(input)
        out=nn.Dropout(p=p)(out)
        out=self.linear1(out)
        out=nn.Dropout(p=p)(out)
        out=self.linear2(out)
        return out

model=mylstm(30,10,200,100,0.3).double()

output=model(input_)
loss=criterion(output,target)
loss.backward()
optimizer.step()
moniter=criterion(model(input2_,0),target2)
Traceback (most recent call last):

  File "<ipython-input-286-e49b6fac918b>", line 1, in <module>
    output=model(input_)

  File "D:\Users\shan xu\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 489, in __call__
    result = self.forward(*input, **kwargs)

TypeError: forward() missing 1 required positional argument: 'p'

Mais aucun d'eux n'a fonctionné.

9
Tommy Yu

Vous devez définir votre couche nn.Dropout Dans votre __init__ Et l'affecter à votre modèle pour répondre à l'appel de eval().

Changer votre modèle comme celui-ci devrait donc vous convenir:

class mylstm(nn.Module):
    def __init__(self,input_dim, output_dim, hidden_dim,linear_dim,p):
        super(mylstm, self).__init__()
        self.hidden_dim=hidden_dim
        self.lstm=nn.LSTMCell(input_dim,self.hidden_dim)
        self.linear1=nn.Linear(hidden_dim,linear_dim)
        self.linear2=nn.Linear(linear_dim,output_dim)

        # define dropout layer in __init__
        self.drop_layer = nn.Dropout(p=p)
    def forward(self, input):
        out,_= self.lstm(input)

        # apply model dropout, responsive to eval()
        out= self.drop_layer(out)
        out= self.linear1(out)

        # apply model dropout, responsive to eval()
        out= self.drop_layer(out)
        out= self.linear2(out)
        return out

Si vous le modifiez comme ceci, le décrochage sera inactif dès que vous appellerez eval().

REMARQUE: Si vous souhaitez poursuivre la formation par la suite, vous devez appeler train() sur votre modèle pour quitter le mode d'évaluation.


Vous pouvez également trouver un petit exemple de travail pour le décrochage avec eval() pour le mode d'évaluation ici: nn.Dropout vs F.dropout pyTorch

0
blue-phoenox

Comme les autres réponses l'ont dit, la couche de suppression doit être définie dans la méthode __init__ De votre modèle, afin que votre modèle puisse garder une trace de toutes les informations de chaque couche prédéfinie. Lorsque l'état du modèle est modifié, il avertit toutes les couches et effectue un travail pertinent. Par exemple, lors de l'appel de model.eval(), votre modèle désactiverait les couches de décrochage mais passerait directement toutes les activations. En général, si vous souhaitez désactiver vos couches d'abandon, vous feriez mieux de définir les couches d'abandon dans la méthode __init__ En utilisant le module nn.Dropout.

0
two four