C'est le modèle que j'ai défini, c'est un simple lstm avec 2 couches entièrement connectées.
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class mylstm(nn.Module):
def __init__(self,input_dim, output_dim, hidden_dim,linear_dim):
super(mylstm, self).__init__()
self.hidden_dim=hidden_dim
self.lstm=nn.LSTMCell(input_dim,self.hidden_dim)
self.linear1=nn.Linear(hidden_dim,linear_dim)
self.linear2=nn.Linear(linear_dim,output_dim)
def forward(self, input):
out,_=self.lstm(input)
out=nn.Dropout(p=0.3)(out)
out=self.linear1(out)
out=nn.Dropout(p=0.3)(out)
out=self.linear2(out)
return out
x_train
Et x_val
Sont des données flottantes avec la forme (4478,30)
, Tandis que y_train
Et y_val
Sont flottantes df avec la forme (4478,10)
x_train.head()
Out[271]:
0 1 2 3 ... 26 27 28 29
0 1.6110 1.6100 1.6293 1.6370 ... 1.6870 1.6925 1.6950 1.6905
1 1.6100 1.6293 1.6370 1.6530 ... 1.6925 1.6950 1.6905 1.6960
2 1.6293 1.6370 1.6530 1.6537 ... 1.6950 1.6905 1.6960 1.6930
3 1.6370 1.6530 1.6537 1.6620 ... 1.6905 1.6960 1.6930 1.6955
4 1.6530 1.6537 1.6620 1.6568 ... 1.6960 1.6930 1.6955 1.7040
[5 rows x 30 columns]
x_train.shape
Out[272]: (4478, 30)
Définissez la variable et faites une seule fois bp, je peux découvrir que la perte de vaildation est de 1,4941
model=mylstm(30,10,200,100).double()
from torch import optim
optimizer=optim.RMSprop(model.parameters(), lr=0.001, alpha=0.9)
criterion=nn.L1Loss()
input_=torch.autograd.Variable(torch.from_numpy(np.array(x_train)))
target=torch.autograd.Variable(torch.from_numpy(np.array(y_train)))
input2_=torch.autograd.Variable(torch.from_numpy(np.array(x_val)))
target2=torch.autograd.Variable(torch.from_numpy(np.array(y_val)))
optimizer.zero_grad()
output=model(input_)
loss=criterion(output,target)
loss.backward()
optimizer.step()
moniter=criterion(model(input2_),target2)
moniter
Out[274]: tensor(1.4941, dtype=torch.float64, grad_fn=<L1LossBackward>)
Mais j'ai appelé à nouveau la fonction avant, j'obtiens un numéro différent en raison du caractère aléatoire du décrochage
moniter=criterion(model(input2_),target2)
moniter
Out[275]: tensor(1.4943, dtype=torch.float64, grad_fn=<L1LossBackward>)
que dois-je faire pour éliminer tous les abandons dans la phrase de prédiction?
J'ai essayé eval()
:
moniter=criterion(model.eval()(input2_),target2)
moniter
Out[282]: tensor(1.4942, dtype=torch.float64, grad_fn=<L1LossBackward>)
moniter=criterion(model.eval()(input2_),target2)
moniter
Out[283]: tensor(1.4945, dtype=torch.float64, grad_fn=<L1LossBackward>)
Et passez un paramètre supplémentaire p pour contrôler le décrochage:
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class mylstm(nn.Module):
def __init__(self,input_dim, output_dim, hidden_dim,linear_dim,p):
super(mylstm, self).__init__()
self.hidden_dim=hidden_dim
self.lstm=nn.LSTMCell(input_dim,self.hidden_dim)
self.linear1=nn.Linear(hidden_dim,linear_dim)
self.linear2=nn.Linear(linear_dim,output_dim)
def forward(self, input,p):
out,_=self.lstm(input)
out=nn.Dropout(p=p)(out)
out=self.linear1(out)
out=nn.Dropout(p=p)(out)
out=self.linear2(out)
return out
model=mylstm(30,10,200,100,0.3).double()
output=model(input_)
loss=criterion(output,target)
loss.backward()
optimizer.step()
moniter=criterion(model(input2_,0),target2)
Traceback (most recent call last):
File "<ipython-input-286-e49b6fac918b>", line 1, in <module>
output=model(input_)
File "D:\Users\shan xu\Anaconda3\lib\site-packages\torch\nn\modules\module.py", line 489, in __call__
result = self.forward(*input, **kwargs)
TypeError: forward() missing 1 required positional argument: 'p'
Mais aucun d'eux n'a fonctionné.
Vous devez définir votre couche nn.Dropout
Dans votre __init__
Et l'affecter à votre modèle pour répondre à l'appel de eval()
.
Changer votre modèle comme celui-ci devrait donc vous convenir:
class mylstm(nn.Module):
def __init__(self,input_dim, output_dim, hidden_dim,linear_dim,p):
super(mylstm, self).__init__()
self.hidden_dim=hidden_dim
self.lstm=nn.LSTMCell(input_dim,self.hidden_dim)
self.linear1=nn.Linear(hidden_dim,linear_dim)
self.linear2=nn.Linear(linear_dim,output_dim)
# define dropout layer in __init__
self.drop_layer = nn.Dropout(p=p)
def forward(self, input):
out,_= self.lstm(input)
# apply model dropout, responsive to eval()
out= self.drop_layer(out)
out= self.linear1(out)
# apply model dropout, responsive to eval()
out= self.drop_layer(out)
out= self.linear2(out)
return out
Si vous le modifiez comme ceci, le décrochage sera inactif dès que vous appellerez eval()
.
REMARQUE: Si vous souhaitez poursuivre la formation par la suite, vous devez appeler train()
sur votre modèle pour quitter le mode d'évaluation.
Vous pouvez également trouver un petit exemple de travail pour le décrochage avec eval()
pour le mode d'évaluation ici: nn.Dropout vs F.dropout pyTorch
Comme les autres réponses l'ont dit, la couche de suppression doit être définie dans la méthode __init__
De votre modèle, afin que votre modèle puisse garder une trace de toutes les informations de chaque couche prédéfinie. Lorsque l'état du modèle est modifié, il avertit toutes les couches et effectue un travail pertinent. Par exemple, lors de l'appel de model.eval()
, votre modèle désactiverait les couches de décrochage mais passerait directement toutes les activations. En général, si vous souhaitez désactiver vos couches d'abandon, vous feriez mieux de définir les couches d'abandon dans la méthode __init__
En utilisant le module nn.Dropout
.