Je voudrais utiliser la bibliothèque multiprocessing
en Python. Malheureusement multiprocessing
utilise pickle
qui ne prend pas en charge les fonctions avec fermetures, lambdas ou fonctions dans __main__
. Ces trois éléments sont importants pour moi
In [1]: import pickle
In [2]: pickle.dumps(lambda x: x)
PicklingError: Can't pickle <function <lambda> at 0x23c0e60>: it's not found as __main__.<lambda>
Heureusement, il existe dill
un cornichon plus robuste. Apparemment, dill
effectue de la magie lors de l'importation pour faire fonctionner les cornichons
In [3]: import dill
In [4]: pickle.dumps(lambda x: x)
Out[4]: "cdill.dill\n_load_type\np0\n(S'FunctionType'\np1 ...
C'est très encourageant, notamment parce que je n'ai pas accès au code source du multiprocessing. Malheureusement, je n'arrive toujours pas à faire fonctionner cet exemple très basique
import multiprocessing as mp
import dill
p = mp.Pool(4)
print p.map(lambda x: x**2, range(10))
Pourquoi est-ce? Qu'est-ce que je rate? Quelles sont exactement les limites de la combinaison multiprocessing
+ dill
?
mrockli@mrockli-notebook:~/workspace/toolz$ python testmp.py
Temporary Edit for J.F Sebastian
mrockli@mrockli-notebook:~/workspace/toolz$ python testmp.py
Exception in thread Thread-2:
Traceback (most recent call last):
File "/home/mrockli/Software/anaconda/lib/python2.7/threading.py", line 808, in __bootstrap_inner
self.run()
File "/home/mrockli/Software/anaconda/lib/python2.7/threading.py", line 761, in run
self.__target(*self.__args, **self.__kwargs)
File "/home/mrockli/Software/anaconda/lib/python2.7/multiprocessing/pool.py", line 342, in _handle_tasks
put(task)
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed
^C
...lots of junk...
[DEBUG/MainProcess] cleaning up worker 3
[DEBUG/MainProcess] cleaning up worker 2
[DEBUG/MainProcess] cleaning up worker 1
[DEBUG/MainProcess] cleaning up worker 0
[DEBUG/MainProcess] added worker
[DEBUG/MainProcess] added worker
[INFO/PoolWorker-5] child process calling self.run()
[INFO/PoolWorker-6] child process calling self.run()
[DEBUG/MainProcess] added worker
[INFO/PoolWorker-7] child process calling self.run()
[DEBUG/MainProcess] added worker
[INFO/PoolWorker-8] child process calling self.run()Exception in thread Thread-2:
Traceback (most recent call last):
File "/home/mrockli/Software/anaconda/lib/python2.7/threading.py", line 808, in __bootstrap_inner
self.run()
File "/home/mrockli/Software/anaconda/lib/python2.7/threading.py", line 761, in run
self.__target(*self.__args, **self.__kwargs)
File "/home/mrockli/Software/anaconda/lib/python2.7/multiprocessing/pool.py", line 342, in _handle_tasks
put(task)
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed
^C
...lots of junk...
[DEBUG/MainProcess] cleaning up worker 3
[DEBUG/MainProcess] cleaning up worker 2
[DEBUG/MainProcess] cleaning up worker 1
[DEBUG/MainProcess] cleaning up worker 0
[DEBUG/MainProcess] added worker
[DEBUG/MainProcess] added worker
[INFO/PoolWorker-5] child process calling self.run()
[INFO/PoolWorker-6] child process calling self.run()
[DEBUG/MainProcess] added worker
[INFO/PoolWorker-7] child process calling self.run()
[DEBUG/MainProcess] added worker
[INFO/PoolWorker-8] child process calling self.run()
multiprocessing
fait de mauvais choix concernant le décapage. Ne vous méprenez pas, cela fait de bons choix qui lui permettent de décaper certains types afin qu'ils puissent être utilisés dans la fonction de carte d'un pool. Cependant, puisque nous avons dill
qui peut faire le décapage, le décapage du multitraitement devient un peu limitant. En fait, si multiprocessing
devait utiliser pickle
au lieu de cPickle
... et également supprimer certains de ses propres remplacements de décapage, alors dill
pourrait prendre le relais et donne une sérialisation beaucoup plus complète pour multiprocessing
.
Jusqu'à ce que cela se produise, il existe un fork de multiprocessing
appelé pathos (la version finale est un peu périmée, malheureusement) qui supprime les limitations ci-dessus. Pathos ajoute également quelques fonctionnalités intéressantes que le multi-traitement n'a pas, comme les multi-arguments dans la fonction de carte. Pathos est prévu pour une version, après quelques mises à jour légères - principalement une conversion en python 3.x.
Python 2.7.5 (default, Sep 30 2013, 20:15:49)
[GCC 4.2.1 (Apple Inc. build 5566)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import dill
>>> from pathos.multiprocessing import ProcessingPool
>>> pool = ProcessingPool(nodes=4)
>>> result = pool.map(lambda x: x**2, range(10))
>>> result
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
et juste pour montrer un peu de ce que pathos.multiprocessing
peut faire...
>>> def busy_add(x,y, delay=0.01):
... for n in range(x):
... x += n
... for n in range(y):
... y -= n
... import time
... time.sleep(delay)
... return x + y
...
>>> def busy_squared(x):
... import time, random
... time.sleep(2*random.random())
... return x*x
...
>>> def squared(x):
... return x*x
...
>>> def quad_factory(a=1, b=1, c=0):
... def quad(x):
... return a*x**2 + b*x + c
... return quad
...
>>> square_plus_one = quad_factory(2,0,1)
>>>
>>> def test1(pool):
... print pool
... print "x: %s\n" % str(x)
... print pool.map.__name__
... start = time.time()
... res = pool.map(squared, x)
... print "time to results:", time.time() - start
... print "y: %s\n" % str(res)
... print pool.imap.__name__
... start = time.time()
... res = pool.imap(squared, x)
... print "time to queue:", time.time() - start
... start = time.time()
... res = list(res)
... print "time to results:", time.time() - start
... print "y: %s\n" % str(res)
... print pool.amap.__name__
... start = time.time()
... res = pool.amap(squared, x)
... print "time to queue:", time.time() - start
... start = time.time()
... res = res.get()
... print "time to results:", time.time() - start
... print "y: %s\n" % str(res)
...
>>> def test2(pool, items=4, delay=0):
... _x = range(-items/2,items/2,2)
... _y = range(len(_x))
... _d = [delay]*len(_x)
... print map
... res1 = map(busy_squared, _x)
... res2 = map(busy_add, _x, _y, _d)
... print pool.map
... _res1 = pool.map(busy_squared, _x)
... _res2 = pool.map(busy_add, _x, _y, _d)
... assert _res1 == res1
... assert _res2 == res2
... print pool.imap
... _res1 = pool.imap(busy_squared, _x)
... _res2 = pool.imap(busy_add, _x, _y, _d)
... assert list(_res1) == res1
... assert list(_res2) == res2
... print pool.amap
... _res1 = pool.amap(busy_squared, _x)
... _res2 = pool.amap(busy_add, _x, _y, _d)
... assert _res1.get() == res1
... assert _res2.get() == res2
... print ""
...
>>> def test3(pool): # test against a function that should fail in pickle
... print pool
... print "x: %s\n" % str(x)
... print pool.map.__name__
... start = time.time()
... res = pool.map(square_plus_one, x)
... print "time to results:", time.time() - start
... print "y: %s\n" % str(res)
...
>>> def test4(pool, maxtries, delay):
... print pool
... m = pool.amap(busy_add, x, x)
... tries = 0
... while not m.ready():
... time.sleep(delay)
... tries += 1
... print "TRY: %s" % tries
... if tries >= maxtries:
... print "TIMEOUT"
... break
... print m.get()
...
>>> import time
>>> x = range(18)
>>> delay = 0.01
>>> items = 20
>>> maxtries = 20
>>> from pathos.multiprocessing import ProcessingPool as Pool
>>> pool = Pool(nodes=4)
>>> test1(pool)
<pool ProcessingPool(ncpus=4)>
x: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
map
time to results: 0.0553691387177
y: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289]
imap
time to queue: 7.91549682617e-05
time to results: 0.102381229401
y: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289]
amap
time to queue: 7.08103179932e-05
time to results: 0.0489699840546
y: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289]
>>> test2(pool, items, delay)
<built-in function map>
<bound method ProcessingPool.map of <pool ProcessingPool(ncpus=4)>>
<bound method ProcessingPool.imap of <pool ProcessingPool(ncpus=4)>>
<bound method ProcessingPool.amap of <pool ProcessingPool(ncpus=4)>>
>>> test3(pool)
<pool ProcessingPool(ncpus=4)>
x: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
map
time to results: 0.0523059368134
y: [1, 3, 9, 19, 33, 51, 73, 99, 129, 163, 201, 243, 289, 339, 393, 451, 513, 579]
>>> test4(pool, maxtries, delay)
<pool ProcessingPool(ncpus=4)>
TRY: 1
TRY: 2
TRY: 3
TRY: 4
TRY: 5
TRY: 6
TRY: 7
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34]