web-dev-qa-db-fra.com

Quel est le moyen le plus rapide de télécharger un gros fichier csv dans un ordinateur portable pour travailler avec python pandas?

J'essaie de télécharger un fichier csv, qui fait 250 Mo. Fondamentalement, 4 millions de lignes et 6 colonnes de données de séries chronologiques (1 min). La procédure habituelle est la suivante:

location = r'C:\Users\Name\Folder_1\Folder_2\file.csv'
df = pd.read_csv(location)

Cette procédure dure environ 20 minutes !!!. Très préliminaire, j'ai exploré les options suivantes

Je me demande si quelqu'un a comparé ces options (ou plus) et il y a clairement un gagnant. Si personne ne répond, à l'avenir, je publierai mes résultats. Je n'ai tout simplement pas le temps pour le moment.

31
hernanavella

Voici les résultats de ma comparaison en lecture et en écriture pour le DF (forme: 4000000 x 6, taille en mémoire 183,1 Mo, taille du CSV non compressé - 492 Mo).

Comparaison pour les formats de stockage suivants: (CSV, CSV.gzip, Pickle, HDF5 [diverses compressions]):

                  read_s  write_s  size_ratio_to_CSV
storage
CSV               17.900    69.00              1.000
CSV.gzip          18.900   186.00              0.047
Pickle             0.173     1.77              0.374
HDF_fixed          0.196     2.03              0.435
HDF_tab            0.230     2.60              0.437
HDF_tab_zlib_c5    0.845     5.44              0.035
HDF_tab_zlib_c9    0.860     5.95              0.035
HDF_tab_bzip2_c5   2.500    36.50              0.011
HDF_tab_bzip2_c9   2.500    36.50              0.011

en train de lire

enter image description here

écriture/sauvegarde

enter image description here

rapport de taille de fichier par rapport au fichier CSV non compressé

enter image description here

DONNÉES BRUTES:

CSV:

In [68]: %timeit df.to_csv(fcsv)
1 loop, best of 3: 1min 9s per loop

In [74]: %timeit pd.read_csv(fcsv)
1 loop, best of 3: 17.9 s per loop

CSV.gzip:

In [70]: %timeit df.to_csv(fcsv_gz, compression='gzip')
1 loop, best of 3: 3min 6s per loop

In [75]: %timeit pd.read_csv(fcsv_gz)
1 loop, best of 3: 18.9 s per loop

Cornichon:

In [66]: %timeit df.to_pickle(fpckl)
1 loop, best of 3: 1.77 s per loop

In [72]: %timeit pd.read_pickle(fpckl)
10 loops, best of 3: 173 ms per loop

HDF (format='fixed') [Défaut]:

In [67]: %timeit df.to_hdf(fh5, 'df')
1 loop, best of 3: 2.03 s per loop

In [73]: %timeit pd.read_hdf(fh5, 'df')
10 loops, best of 3: 196 ms per loop

HDF (format='table'):

In [37]: %timeit df.to_hdf('D:\\temp\\.data\\37010212_tab.h5', 'df', format='t')
1 loop, best of 3: 2.6 s per loop

In [38]: %timeit pd.read_hdf('D:\\temp\\.data\\37010212_tab.h5', 'df')
1 loop, best of 3: 230 ms per loop

HDF (format='table', complib='zlib', complevel=5):

In [40]: %timeit df.to_hdf('D:\\temp\\.data\\37010212_tab_compress_zlib5.h5', 'df', format='t', complevel=5, complib='zlib')
1 loop, best of 3: 5.44 s per loop

In [41]: %timeit pd.read_hdf('D:\\temp\\.data\\37010212_tab_compress_zlib5.h5', 'df')
1 loop, best of 3: 854 ms per loop

HDF (format='table', complib='zlib', complevel=9):

In [36]: %timeit df.to_hdf('D:\\temp\\.data\\37010212_tab_compress_zlib9.h5', 'df', format='t', complevel=9, complib='zlib')
1 loop, best of 3: 5.95 s per loop

In [39]: %timeit pd.read_hdf('D:\\temp\\.data\\37010212_tab_compress_zlib9.h5', 'df')
1 loop, best of 3: 860 ms per loop

HDF (format='table', complib='bzip2', complevel=5):

In [42]: %timeit df.to_hdf('D:\\temp\\.data\\37010212_tab_compress_bzip2_l5.h5', 'df', format='t', complevel=5, complib='bzip2')
1 loop, best of 3: 36.5 s per loop

In [43]: %timeit pd.read_hdf('D:\\temp\\.data\\37010212_tab_compress_bzip2_l5.h5', 'df')
1 loop, best of 3: 2.5 s per loop

HDF (format='table', complib='bzip2', complevel=9):

In [42]: %timeit df.to_hdf('D:\\temp\\.data\\37010212_tab_compress_bzip2_l9.h5', 'df', format='t', complevel=9, complib='bzip2')
1 loop, best of 3: 36.5 s per loop

In [43]: %timeit pd.read_hdf('D:\\temp\\.data\\37010212_tab_compress_bzip2_l9.h5', 'df')
1 loop, best of 3: 2.5 s per loop

PS je ne peux pas tester feather sur mon Windows notebook

DF info:

In [49]: df.shape
Out[49]: (4000000, 6)

In [50]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4000000 entries, 0 to 3999999
Data columns (total 6 columns):
a    datetime64[ns]
b    datetime64[ns]
c    datetime64[ns]
d    datetime64[ns]
e    datetime64[ns]
f    datetime64[ns]
dtypes: datetime64[ns](6)
memory usage: 183.1 MB

In [41]: df.head()
Out[41]:
                    a                   b                   c  \
0 1970-01-01 00:00:00 1970-01-01 00:01:00 1970-01-01 00:02:00
1 1970-01-01 00:01:00 1970-01-01 00:02:00 1970-01-01 00:03:00
2 1970-01-01 00:02:00 1970-01-01 00:03:00 1970-01-01 00:04:00
3 1970-01-01 00:03:00 1970-01-01 00:04:00 1970-01-01 00:05:00
4 1970-01-01 00:04:00 1970-01-01 00:05:00 1970-01-01 00:06:00

                    d                   e                   f
0 1970-01-01 00:03:00 1970-01-01 00:04:00 1970-01-01 00:05:00
1 1970-01-01 00:04:00 1970-01-01 00:05:00 1970-01-01 00:06:00
2 1970-01-01 00:05:00 1970-01-01 00:06:00 1970-01-01 00:07:00
3 1970-01-01 00:06:00 1970-01-01 00:07:00 1970-01-01 00:08:00
4 1970-01-01 00:07:00 1970-01-01 00:08:00 1970-01-01 00:09:00

Tailles de fichiers:

{ .data }  » ls -lh 37010212.*                                                                          /d/temp/.data
-rw-r--r-- 1 Max None 492M May  3 22:21 37010212.csv
-rw-r--r-- 1 Max None  23M May  3 22:19 37010212.csv.gz
-rw-r--r-- 1 Max None 214M May  3 22:02 37010212.h5
-rw-r--r-- 1 Max None 184M May  3 22:02 37010212.pickle
-rw-r--r-- 1 Max None 215M May  4 10:39 37010212_tab.h5
-rw-r--r-- 1 Max None 5.4M May  4 10:46 37010212_tab_compress_bzip2_l5.h5
-rw-r--r-- 1 Max None 5.4M May  4 10:51 37010212_tab_compress_bzip2_l9.h5
-rw-r--r-- 1 Max None  17M May  4 10:42 37010212_tab_compress_zlib5.h5
-rw-r--r-- 1 Max None  17M May  4 10:36 37010212_tab_compress_zlib9.h5

Conclusion:

Pickle et HDF5 sont beaucoup plus rapides, mais HDF5 est plus pratique - vous pouvez stocker plusieurs tables/cadres à l'intérieur, vous pouvez lire vos données de manière conditionnelle (regardez le paramètre where dans read_hdf () ), vous pouvez également stocker vos données compressé (zlib - est plus rapide, bzip2 - fournit un meilleur taux de compression), etc.

PS si vous pouvez construire/utiliser feather-format - il devrait être encore plus rapide que HDF5 et Pickle

PPS: n'utilisez pas Pickle pour les trames de données volumineuses, car vous pourriez vous retrouver avec SystemError: retour d'erreur sans jeu d'exceptions Message d'erreur. Il est également décrit ici et ici .

50
MaxU