J'ai des données hiérarchiques qui se basent sur des données chronologiques ressemblant à ceci:
df = pandas.DataFrame(
{'value_a': values_a, 'value_b': values_b},
index=[states, cities, dates])
df.index.names = ['State', 'City', 'Date']
df
value_a value_b
State City Date
Georgia Atlanta 2012-01-01 0 10
2012-01-02 1 11
2012-01-03 2 12
2012-01-04 3 13
Savanna 2012-01-01 4 14
2012-01-02 5 15
2012-01-03 6 16
2012-01-04 7 17
Alabama Mobile 2012-01-01 8 18
2012-01-02 9 19
2012-01-03 10 20
2012-01-04 11 21
Montgomery 2012-01-01 12 22
2012-01-02 13 23
2012-01-03 14 24
2012-01-04 15 25
Je voudrais effectuer un rééchantillonnage du temps par ville, donc quelque chose comme
df.resample("2D", how="sum")
serait sortie
value_a value_b
State City Date
Georgia Atlanta 2012-01-01 1 21
2012-01-03 5 25
Savanna 2012-01-01 9 29
2012-01-03 13 33
Alabama Mobile 2012-01-01 17 37
2012-01-03 21 41
Montgomery 2012-01-01 25 45
2012-01-03 29 49
tel quel, df.resample('2D', how='sum')
me procure
TypeError: Only valid with DatetimeIndex or PeriodIndex
Très bien, mais je m'attendrais à ce que cela fonctionne:
>>> df.swaplevel('Date', 'State').resample('2D', how='sum')
TypeError: Only valid with DatetimeIndex or PeriodIndex
à quel point je suis vraiment à court d'idées ... existe-t-il un moyen d'empiler et de dépiler pourrait-il m'aider?
pd.Grouper
vous permet de spécifier une "instruction groupby pour un objet cible". En Notamment, vous pouvez l’utiliser pour grouper par dates même si df.index
n’est pas une DatetimeIndex
:
df.groupby(pd.Grouper(freq='2D', level=-1))
Le level=-1
indique à pd.Grouper
de rechercher les dates dans le dernier niveau du MultiIndex . De plus, vous pouvez l'utiliser conjointement avec d'autres valeurs de niveau de l'index:
level_values = df.index.get_level_values
result = (df.groupby([level_values(i) for i in [0,1]]
+[pd.Grouper(freq='2D', level=-1)]).sum())
Cela semble un peu gênant, mais using_Grouper
s'avère être beaucoup plus rapide que ma suggestion D'origine, using_reset_index
:
import numpy as np
import pandas as pd
import datetime as DT
def using_Grouper(df):
level_values = df.index.get_level_values
return (df.groupby([level_values(i) for i in [0,1]]
+[pd.Grouper(freq='2D', level=-1)]).sum())
def using_reset_index(df):
df = df.reset_index(level=[0, 1])
return df.groupby(['State','City']).resample('2D').sum()
def using_stack(df):
# http://stackoverflow.com/a/15813787/190597
return (df.unstack(level=[0,1])
.resample('2D').sum()
.stack(level=[2,1])
.swaplevel(2,0))
def make_orig():
values_a = range(16)
values_b = range(10, 26)
states = ['Georgia']*8 + ['Alabama']*8
cities = ['Atlanta']*4 + ['Savanna']*4 + ['Mobile']*4 + ['Montgomery']*4
dates = pd.DatetimeIndex([DT.date(2012,1,1)+DT.timedelta(days = i) for i in range(4)]*4)
df = pd.DataFrame(
{'value_a': values_a, 'value_b': values_b},
index = [states, cities, dates])
df.index.names = ['State', 'City', 'Date']
return df
def make_df(N):
dates = pd.date_range('2000-1-1', periods=N)
states = np.arange(50)
cities = np.arange(10)
index = pd.MultiIndex.from_product([states, cities, dates],
names=['State', 'City', 'Date'])
df = pd.DataFrame(np.random.randint(10, size=(len(index),2)), index=index,
columns=['value_a', 'value_b'])
return df
df = make_orig()
print(using_Grouper(df))
les rendements
value_a value_b
State City Date
Alabama Mobile 2012-01-01 17 37
2012-01-03 21 41
Montgomery 2012-01-01 25 45
2012-01-03 29 49
Georgia Atlanta 2012-01-01 1 21
2012-01-03 5 25
Savanna 2012-01-01 9 29
2012-01-03 13 33
Voici un point de repère comparant using_Grouper
, using_reset_index
, using_stack
sur un DataFrame à 5000 lignes:
In [30]: df = make_df(10)
In [34]: len(df)
Out[34]: 5000
In [32]: %timeit using_Grouper(df)
100 loops, best of 3: 6.03 ms per loop
In [33]: %timeit using_stack(df)
10 loops, best of 3: 22.3 ms per loop
In [31]: %timeit using_reset_index(df)
1 loop, best of 3: 659 ms per loop
Une alternative utilisant stack/unstack
df.unstack(level=[0,1]).resample('2D', how='sum').stack(level=[2,1]).swaplevel(2,0)
value_a value_b
State City Date
Georgia Atlanta 2012-01-01 1 21
Alabama Mobile 2012-01-01 17 37
Montgomery 2012-01-01 25 45
Georgia Savanna 2012-01-01 9 29
Atlanta 2012-01-03 5 25
Alabama Mobile 2012-01-03 21 41
Montgomery 2012-01-03 29 49
Georgia Savanna 2012-01-03 13 33
Remarques:
Cela marche:
df.groupby(level=[0,1]).apply(lambda x: x.set_index('Date').resample('2D', how='sum'))
value_a value_b
State City Date
Alabama Mobile 2012-01-01 17 37
2012-01-03 21 41
Montgomery 2012-01-01 25 45
2012-01-03 29 49
Georgia Atlanta 2012-01-01 1 21
2012-01-03 5 25
Savanna 2012-01-01 9 29
2012-01-03 13 33
Si la colonne Date est une chaîne, convertissez-la au préalable en date-heure
df['Date'] = pd.to_datetime(df['Date'])
Vous avez besoin de la méthode groupby()
et lui fournissez un pd.Grouper
pour chaque niveau de votre MultiIndex que vous souhaitez gérer dans le DataFrame résultant. Vous pouvez ensuite appliquer une opération de choix.
Pour rééchantillonner les niveaux de date ou d'horodatage, vous devez définir l'argument freq
avec la fréquence de choix. Une approche similaire utilisant pd.TimeGrouper()
est obsolète en faveur de pd.Grouper()
avec l'ensemble d'arguments freq
.
Cela devrait vous donner le DataFrame dont vous avez besoin:
_df.groupby([pd.Grouper(level='State'), pd.Grouper(level='City'), pd.Grouper(level='Date', freq='2D')]).sum()
_
Le Time Series Guide dans la documentation de pandas décrit resample()
comme: "un groupe basé sur le temps, suivi d'une méthode de réduction pour chacun de ses groupes". Par conséquent, utiliser groupby()
devrait techniquement être la même opération que pour utiliser .resample()
sur un DataFrame avec un seul index.
Le même paragraphe pointe vers section du livre de recettes sur le rééchantillonnage pour des exemples plus avancés, où l'entrée ' Groupement utilisant un MultiIndex ' est très pertinente pour cette question. J'espère que cela pourra aider.
Je sais que cette question date de quelques années, mais j'avais le même problème et suis parvenue à une solution plus simple qui nécessite 1 ligne:
>>> import pandas as pd
>>> ts = pd.read_pickle('time_series.pickle')
>>> ts
xxxxxx1 yyyyyyyyyyyyyyyyyyyyyy1 2012-07-01 1
2012-07-02 13
2012-07-03 1
2012-07-04 1
2012-07-05 10
2012-07-06 4
2012-07-07 47
2012-07-08 0
2012-07-09 3
2012-07-10 22
2012-07-11 3
2012-07-12 0
2012-07-13 22
2012-07-14 1
2012-07-15 2
2012-07-16 2
2012-07-17 8
2012-07-18 0
2012-07-19 1
2012-07-20 10
2012-07-21 0
2012-07-22 3
2012-07-23 0
2012-07-24 35
2012-07-25 6
2012-07-26 1
2012-07-27 0
2012-07-28 6
2012-07-29 23
2012-07-30 0
..
xxxxxxN yyyyyyyyyyyyyyyyyyyyyyN 2014-06-02 0
2014-06-03 1
2014-06-04 0
2014-06-05 0
2014-06-06 0
2014-06-07 0
2014-06-08 2
2014-06-09 0
2014-06-10 0
2014-06-11 0
2014-06-12 0
2014-06-13 0
2014-06-14 0
2014-06-15 0
2014-06-16 0
2014-06-17 0
2014-06-18 0
2014-06-19 0
2014-06-20 0
2014-06-21 0
2014-06-22 0
2014-06-23 0
2014-06-24 0
2014-06-25 4
2014-06-26 0
2014-06-27 1
2014-06-28 0
2014-06-29 0
2014-06-30 1
2014-07-01 0
dtype: int64
>>> ts.unstack().T.resample('W', how='sum').T.stack()
xxxxxx1 yyyyyyyyyyyyyyyyyyyyyy1 2012-06-25/2012-07-01 1
2012-07-02/2012-07-08 76
2012-07-09/2012-07-15 53
2012-07-16/2012-07-22 24
2012-07-23/2012-07-29 71
2012-07-30/2012-08-05 38
2012-08-06/2012-08-12 258
2012-08-13/2012-08-19 144
2012-08-20/2012-08-26 184
2012-08-27/2012-09-02 323
2012-09-03/2012-09-09 198
2012-09-10/2012-09-16 348
2012-09-17/2012-09-23 404
2012-09-24/2012-09-30 380
2012-10-01/2012-10-07 367
2012-10-08/2012-10-14 163
2012-10-15/2012-10-21 338
2012-10-22/2012-10-28 252
2012-10-29/2012-11-04 197
2012-11-05/2012-11-11 336
2012-11-12/2012-11-18 234
2012-11-19/2012-11-25 143
2012-11-26/2012-12-02 204
2012-12-03/2012-12-09 296
2012-12-10/2012-12-16 146
2012-12-17/2012-12-23 85
2012-12-24/2012-12-30 198
2012-12-31/2013-01-06 214
2013-01-07/2013-01-13 229
2013-01-14/2013-01-20 192
...
xxxxxxN yyyyyyyyyyyyyyyyyyyyyyN 2013-12-09/2013-12-15 3
2013-12-16/2013-12-22 0
2013-12-23/2013-12-29 0
2013-12-30/2014-01-05 1
2014-01-06/2014-01-12 3
2014-01-13/2014-01-19 6
2014-01-20/2014-01-26 11
2014-01-27/2014-02-02 0
2014-02-03/2014-02-09 1
2014-02-10/2014-02-16 4
2014-02-17/2014-02-23 3
2014-02-24/2014-03-02 1
2014-03-03/2014-03-09 4
2014-03-10/2014-03-16 0
2014-03-17/2014-03-23 0
2014-03-24/2014-03-30 9
2014-03-31/2014-04-06 1
2014-04-07/2014-04-13 1
2014-04-14/2014-04-20 1
2014-04-21/2014-04-27 2
2014-04-28/2014-05-04 8
2014-05-05/2014-05-11 7
2014-05-12/2014-05-18 5
2014-05-19/2014-05-25 2
2014-05-26/2014-06-01 8
2014-06-02/2014-06-08 3
2014-06-09/2014-06-15 0
2014-06-16/2014-06-22 0
2014-06-23/2014-06-29 5
2014-06-30/2014-07-06 1
dtype: int64
ts.unstack().T.resample('W', how='sum').T.stack()
est tout ce qu'il a fallu! Très facile et semble assez performant. Le cornichon que je lis est 331M, donc c'est une structure de données assez costaud; le rééchantillonnage ne prend que quelques secondes sur mon MacBook Pro.
J'avais le même problème, je me suis cassé la tête pendant un moment, mais j'ai ensuite lu la documentation de la fonction .resample
dans 0.19.2 docs et je vois qu'il existe une nouvelle kwarg
appelée "niveau" que vous pouvez utiliser spécifier un niveau dans un MultiIndex.
Edit: Plus de détails dans la section "Quoi de neuf" .
Je n'ai pas vérifié l'efficacité de cette opération, mais ma méthode instinctive pour effectuer des opérations de datetime sur un index multiple était par une sorte de processus manuel "split-apply-combine" utilisant une compréhension par dictionnaire.
En supposant que votre DataFrame n'est pas indexé. (Vous pouvez faire .reset_index()
en premier), cela fonctionne comme suit:
pd.concat
Le code final ressemble à ceci:
pd.concat({g: x.set_index("Date").resample("2D").mean()
for g, x in house.groupby(["State", "City"])})