Disons que j'ai une image numpy d'une certaine largeur x et hauteur y. Je dois recadrer la partie centrale de l'image en largeur cropx et en hauteur cropy. Supposons que cropx et cropy sont des entiers positifs non nuls et inférieurs à la taille d'image respective. Quelle est la meilleure façon d'appliquer le découpage pour l'image de sortie?
Quelque chose dans ce sens -
def crop_center(img,cropx,cropy):
y,x = img.shape
startx = x//2-(cropx//2)
starty = y//2-(cropy//2)
return img[starty:starty+cropy,startx:startx+cropx]
Exemple d'exécution -
In [45]: img
Out[45]:
array([[88, 93, 42, 25, 36, 14, 59, 46, 77, 13, 52, 58],
[43, 47, 40, 48, 23, 74, 12, 33, 58, 93, 87, 87],
[54, 75, 79, 21, 15, 44, 51, 68, 28, 94, 78, 48],
[57, 46, 14, 98, 43, 76, 86, 56, 86, 88, 96, 49],
[52, 83, 13, 18, 40, 33, 11, 87, 38, 74, 23, 88],
[81, 28, 86, 89, 16, 28, 66, 67, 80, 23, 95, 98],
[46, 30, 18, 31, 73, 15, 90, 77, 71, 57, 61, 78],
[33, 58, 20, 11, 80, 25, 96, 80, 27, 40, 66, 92],
[13, 59, 77, 53, 91, 16, 47, 79, 33, 78, 25, 66],
[22, 80, 40, 24, 17, 85, 20, 70, 81, 68, 50, 80]])
In [46]: crop_center(img,4,6)
Out[46]:
array([[15, 44, 51, 68],
[43, 76, 86, 56],
[40, 33, 11, 87],
[16, 28, 66, 67],
[73, 15, 90, 77],
[80, 25, 96, 80]])
Une solution plus générale basée sur la réponse de @Divakar:
def cropND(img, bounding):
start = Tuple(map(lambda a, da: a//2-da//2, img.shape, bounding))
end = Tuple(map(operator.add, start, bounding))
slices = Tuple(map(slice, start, end))
return img[slices]
et si nous avons un tableau a
>>> a = np.arange(100).reshape((10,10))
array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[70, 71, 72, 73, 74, 75, 76, 77, 78, 79],
[80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]])
Nous pouvons le couper avec cropND(a, (5,5))
, vous obtiendrez:
>>> cropND(a, (5,5))
array([[33, 34, 35, 36, 37],
[43, 44, 45, 46, 47],
[53, 54, 55, 56, 57],
[63, 64, 65, 66, 67],
[73, 74, 75, 76, 77]])
Cela fonctionne non seulement avec l'image 2D mais aussi avec l'image 3D.
Bonne journée.
Merci, Divakar.
Votre réponse m'a fait aller dans la bonne direction. Je suis arrivé à cela en utilisant des décalages de tranche négatifs pour compter "à la fin":
def cropimread(crop, xcrop, ycrop, fn):
"Function to crop center of an image file"
img_pre= msc.imread(fn)
if crop:
ysize, xsize, chan = img_pre.shape
xoff = (xsize - xcrop) // 2
yoff = (ysize - ycrop) // 2
img= img_pre[yoff:-yoff,xoff:-xoff]
else:
img= img_pre
return img
Une simple modification de la réponse de @Divakar qui préserve le canal d'image:
def crop_center(self, img, cropx, cropy):
_, y, x = img.shape
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
return img[:, starty:starty + cropy, startx:startx + cropx]