web-dev-qa-db-fra.com

recadrer la partie centrale d'une image numpy

Disons que j'ai une image numpy d'une certaine largeur x et hauteur y. Je dois recadrer la partie centrale de l'image en largeur cropx et en hauteur cropy. Supposons que cropx et cropy sont des entiers positifs non nuls et inférieurs à la taille d'image respective. Quelle est la meilleure façon d'appliquer le découpage pour l'image de sortie?

20
Gert Gottschalk

Quelque chose dans ce sens -

def crop_center(img,cropx,cropy):
    y,x = img.shape
    startx = x//2-(cropx//2)
    starty = y//2-(cropy//2)    
    return img[starty:starty+cropy,startx:startx+cropx]

Exemple d'exécution -

In [45]: img
Out[45]: 
array([[88, 93, 42, 25, 36, 14, 59, 46, 77, 13, 52, 58],
       [43, 47, 40, 48, 23, 74, 12, 33, 58, 93, 87, 87],
       [54, 75, 79, 21, 15, 44, 51, 68, 28, 94, 78, 48],
       [57, 46, 14, 98, 43, 76, 86, 56, 86, 88, 96, 49],
       [52, 83, 13, 18, 40, 33, 11, 87, 38, 74, 23, 88],
       [81, 28, 86, 89, 16, 28, 66, 67, 80, 23, 95, 98],
       [46, 30, 18, 31, 73, 15, 90, 77, 71, 57, 61, 78],
       [33, 58, 20, 11, 80, 25, 96, 80, 27, 40, 66, 92],
       [13, 59, 77, 53, 91, 16, 47, 79, 33, 78, 25, 66],
       [22, 80, 40, 24, 17, 85, 20, 70, 81, 68, 50, 80]])

In [46]: crop_center(img,4,6)
Out[46]: 
array([[15, 44, 51, 68],
       [43, 76, 86, 56],
       [40, 33, 11, 87],
       [16, 28, 66, 67],
       [73, 15, 90, 77],
       [80, 25, 96, 80]])
30
Divakar

Une solution plus générale basée sur la réponse de @Divakar:

def cropND(img, bounding):
    start = Tuple(map(lambda a, da: a//2-da//2, img.shape, bounding))
    end = Tuple(map(operator.add, start, bounding))
    slices = Tuple(map(slice, start, end))
    return img[slices]

et si nous avons un tableau a

>>> a = np.arange(100).reshape((10,10))

array([[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],
       [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
       [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
       [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
       [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
       [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
       [70, 71, 72, 73, 74, 75, 76, 77, 78, 79],
       [80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
       [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]])

Nous pouvons le couper avec cropND(a, (5,5)), vous obtiendrez:

>>> cropND(a, (5,5))

array([[33, 34, 35, 36, 37],
       [43, 44, 45, 46, 47],
       [53, 54, 55, 56, 57],
       [63, 64, 65, 66, 67],
       [73, 74, 75, 76, 77]])

Cela fonctionne non seulement avec l'image 2D mais aussi avec l'image 3D.

Bonne journée.

14
Losses Don

Merci, Divakar.

Votre réponse m'a fait aller dans la bonne direction. Je suis arrivé à cela en utilisant des décalages de tranche négatifs pour compter "à la fin":

def cropimread(crop, xcrop, ycrop, fn):
    "Function to crop center of an image file"
    img_pre= msc.imread(fn)
    if crop:
        ysize, xsize, chan = img_pre.shape
        xoff = (xsize - xcrop) // 2
        yoff = (ysize - ycrop) // 2
        img= img_pre[yoff:-yoff,xoff:-xoff]
    else:
        img= img_pre
    return img
1
Gert Gottschalk

Une simple modification de la réponse de @Divakar qui préserve le canal d'image:

    def crop_center(self, img, cropx, cropy):
       _, y, x = img.shape
       startx = x // 2 - (cropx // 2)
       starty = y // 2 - (cropy // 2)
       return img[:, starty:starty + cropy, startx:startx + cropx]
0
Kevin Debugging