minAreaRect
dans OpenCV renvoie un rectangle pivoté. Comment puis-je recadrer cette partie de l'image qui se trouve à l'intérieur du rectangle?
boxPoints
renvoie les coordonnées des sommets du rectangle pivoté afin que vous puissiez accéder aux pixels en parcourant en boucle les points à l'intérieur de la zone. Existe-t-il un moyen plus rapide de rogner en Python?
MODIFIER
Voir code
dans ma réponse ci-dessous.
Vous n'avez pas donné d'exemple de code, je réponds donc sans code également. Vous pouvez procéder comme suit:
voici une fonction qui fait cette tâche:
import cv2
import numpy as np
def crop_minAreaRect(img, rect):
# rotate img
angle = rect[2]
rows,cols = img.shape[0], img.shape[1]
M = cv2.getRotationMatrix2D((cols/2,rows/2),angle,1)
img_rot = cv2.warpAffine(img,M,(cols,rows))
# rotate bounding box
rect0 = (rect[0], rect[1], 0.0)
box = cv2.boxPoints(rect0)
pts = np.int0(cv2.transform(np.array([box]), M))[0]
pts[pts < 0] = 0
# crop
img_crop = img_rot[pts[1][1]:pts[0][1],
pts[1][0]:pts[2][0]]
return img_crop
voici un exemple d'utilisation
# generate image
img = np.zeros((1000, 1000), dtype=np.uint8)
img = cv2.line(img,(400,400),(511,511),1,120)
img = cv2.line(img,(300,300),(700,500),1,120)
# find contours / rectangle
_,contours,_ = cv2.findContours(img, 1, 1)
rect = cv2.minAreaRect(contours[0])
# crop
img_croped = crop_minAreaRect(img, rect)
# show
import matplotlib.pylab as plt
plt.figure()
plt.subplot(1,2,1)
plt.imshow(img)
plt.subplot(1,2,2)
plt.imshow(img_croped)
plt.show()
c'est la sortie
Voici le code pour effectuer la tâche ci-dessus. Pour accélérer le processus, au lieu de d'abord faire pivoter l'image entière et de la rogner, une partie de l'image comportant le rectangle pivoté est d'abord rognée, puis pivotée et recadrée pour obtenir le résultat final.
# Let cnt be the contour and img be the input
rect = cv2.minAreaRect(cnt)
box = cv2.boxPoints(rect)
box = np.int0(box)
W = rect[1][0]
H = rect[1][1]
Xs = [i[0] for i in box]
Ys = [i[1] for i in box]
x1 = min(Xs)
x2 = max(Xs)
y1 = min(Ys)
y2 = max(Ys)
angle = rect[2]
if angle < -45:
angle += 90
# Center of rectangle in source image
center = ((x1+x2)/2,(y1+y2)/2)
# Size of the upright rectangle bounding the rotated rectangle
size = (x2-x1, y2-y1)
M = cv2.getRotationMatrix2D((size[0]/2, size[1]/2), angle, 1.0)
# Cropped upright rectangle
cropped = cv2.getRectSubPix(img, size, center)
cropped = cv2.warpAffine(cropped, M, size)
croppedW = H if H > W else W
croppedH = H if H < W else W
# Final cropped & rotated rectangle
croppedRotated = cv2.getRectSubPix(cropped, (int(croppedW),int(croppedH)), (size[0]/2, size[1]/2))
@AbdulFatir cherchait une bonne solution, mais comme l'indiquent les commentaires (@Randika @epinal), cela ne fonctionne pas vraiment pour moi non plus, alors je l'ai légèrement modifiée et cela semble fonctionner pour mon cas. voici l'image que j'utilise.
im, contours, hierarchy = cv2.findContours(open_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print("num of contours: {}".format(len(contours)))
mult = 1.2 # I wanted to show an area slightly larger than my min rectangle set this to one if you don't
img_box = cv2.cvtColor(img.copy(), cv2.COLOR_GRAY2BGR)
for cnt in contours:
rect = cv2.minAreaRect(cnt)
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(img_box, [box], 0, (0,255,0), 2) # this was mostly for debugging you may omit
W = rect[1][0]
H = rect[1][1]
Xs = [i[0] for i in box]
Ys = [i[1] for i in box]
x1 = min(Xs)
x2 = max(Xs)
y1 = min(Ys)
y2 = max(Ys)
rotated = False
angle = rect[2]
if angle < -45:
angle+=90
rotated = True
center = (int((x1+x2)/2), int((y1+y2)/2))
size = (int(mult*(x2-x1)),int(mult*(y2-y1)))
cv2.circle(img_box, center, 10, (0,255,0), -1) #again this was mostly for debugging purposes
M = cv2.getRotationMatrix2D((size[0]/2, size[1]/2), angle, 1.0)
cropped = cv2.getRectSubPix(img_box, size, center)
cropped = cv2.warpAffine(cropped, M, size)
croppedW = W if not rotated else H
croppedH = H if not rotated else W
croppedRotated = cv2.getRectSubPix(cropped, (int(croppedW*mult), int(croppedH*mult)), (size[0]/2, size[1]/2))
plt.imshow(croppedRotated)
plt.show()
plt.imshow(img_box)
plt.show()