web-dev-qa-db-fra.com

rejoindre ou fusionner avec écraser dans pandas

Je souhaite effectuer une opération de jointure/fusion/ajout sur une trame de données avec un index datetime.

Disons que j'ai df1 et je veux ajouter df2 à elle. df2 peut avoir moins ou plus de colonnes et des index qui se chevauchent. Pour toutes les lignes où les index correspondent, si df2 a la même colonne que df1, Je veux les valeurs de df1 être remplacé par ceux de df2.

Comment obtenir le résultat souhaité?

36
saroele

Que diriez-vous: df2.combine_first(df1) ?

In [33]: df2
Out[33]: 
                   A         B         C         D
2000-01-03  0.638998  1.277361  0.193649  0.345063
2000-01-04 -0.816756 -1.711666 -1.155077 -0.678726
2000-01-05  0.435507 -0.025162 -1.112890  0.324111
2000-01-06 -0.210756 -1.027164  0.036664  0.884715
2000-01-07 -0.821631 -0.700394 -0.706505  1.193341
2000-01-10  1.015447 -0.909930  0.027548  0.258471
2000-01-11 -0.497239 -0.979071 -0.461560  0.447598

In [34]: df1
Out[34]: 
                   A         B         C
2000-01-03  2.288863  0.188175 -0.040928
2000-01-04  0.159107 -0.666861 -0.551628
2000-01-05 -0.356838 -0.231036 -1.211446
2000-01-06 -0.866475  1.113018 -0.001483
2000-01-07  0.303269  0.021034  0.471715
2000-01-10  1.149815  0.686696 -1.230991
2000-01-11 -1.296118 -0.172950 -0.603887
2000-01-12 -1.034574 -0.523238  0.626968
2000-01-13 -0.193280  1.857499 -0.046383
2000-01-14 -1.043492 -0.820525  0.868685

In [35]: df2.comb
df2.combine        df2.combineAdd     df2.combine_first  df2.combineMult    

In [35]: df2.combine_first(df1)
Out[35]: 
                   A         B         C         D
2000-01-03  0.638998  1.277361  0.193649  0.345063
2000-01-04 -0.816756 -1.711666 -1.155077 -0.678726
2000-01-05  0.435507 -0.025162 -1.112890  0.324111
2000-01-06 -0.210756 -1.027164  0.036664  0.884715
2000-01-07 -0.821631 -0.700394 -0.706505  1.193341
2000-01-10  1.015447 -0.909930  0.027548  0.258471
2000-01-11 -0.497239 -0.979071 -0.461560  0.447598
2000-01-12 -1.034574 -0.523238  0.626968       NaN
2000-01-13 -0.193280  1.857499 -0.046383       NaN
2000-01-14 -1.043492 -0.820525  0.868685       NaN

Notez qu'il prend les valeurs de df1 pour les indices qui ne se chevauchent pas avec df2. Si cela ne fait pas exactement ce que vous voulez, je serais disposé à améliorer cette fonction/à lui ajouter des options.

39
Wes McKinney

Pour une fusion comme celle-ci, la méthode update d'un DataFrame est utile.

Prenant les exemples de la documentation :

import pandas as pd
import numpy as np

df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, 2.1, np.nan],
                   [np.nan, 7., np.nan]])
df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]],
                   index=[1, 2])

Données avant le update:

>>> df1
     0    1    2
0  NaN  3.0  5.0
1 -4.6  2.1  NaN
2  NaN  7.0  NaN
>>>
>>> df2
      0    1    2
1 -42.6  NaN -8.2
2  -5.0  1.6  4.0

Mettons à jour df1 avec des données de df2:

df1.update(df2)

Données après la mise à jour:

>>> df1
      0    1    2
0   NaN  3.0  5.0
1 -42.6  2.1 -8.2
2  -5.0  1.6  4.0

Remarques:

  • Il est important de noter qu'il s'agit d'une opération "en place", modifiant le DataFrame qui appelle update.
  • Notez également que les valeurs non NaN dans df1 ne sont pas écrasés par des valeurs NaN dans df2
20
Nicolás Ozimica