J'espère avoir une question simple qui me donne beaucoup de difficulté depuis 3 heures. Ça devrait être facile.
Voici le défi.
J'ai un pandas dataframe:
+--------------------------+
| Col 'X' Col 'Y' |
+--------------------------+
| class 1 cat 1 |
| class 2 cat 1 |
| class 3 cat 2 |
| class 2 cat 3 |
+--------------------------+
Ce que je cherche à transformer le dataframe en:
+------------------------------------------+
| cat 1 cat 2 cat 3 |
+------------------------------------------+
| class 1 1 0 0 |
| class 2 1 0 1 |
| class 3 0 1 0 |
+------------------------------------------+
Où les valeurs sont des valeurs comptent. Quelqu'un a une idée? Merci!
Voici deux façons de remodeler vos données df
In [27]: df
Out[27]:
Col X Col Y
0 class 1 cat 1
1 class 2 cat 1
2 class 3 cat 2
3 class 2 cat 3
1) Utilisation de pd.crosstab()
In [28]: pd.crosstab(df['Col X'], df['Col Y'])
Out[28]:
Col Y cat 1 cat 2 cat 3
Col X
class 1 1 0 0
class 2 1 0 1
class 3 0 1 0
2) Ou utilisez groupby
sur 'Col X','Col Y'
Avec unstack
sur Col Y
, puis remplissez NaNs
de zéros.
In [29]: df.groupby(['Col X','Col Y']).size().unstack('Col Y', fill_value=0)
Out[29]:
Col Y cat 1 cat 2 cat 3
Col X
class 1 1 0 0
class 2 1 0 1
class 3 0 1 0
3) Ou utilisez pd.pivot_table()
avec index=Col X
, columns=Col Y
In [30]: pd.pivot_table(df, index=['Col X'], columns=['Col Y'], aggfunc=len, fill_value=0)
Out[30]:
Col Y cat 1 cat 2 cat 3
Col X
class 1 1 0 0
class 2 1 0 1
class 3 0 1 0
4) Ou utilisez set_index
Avec unstack
In [492]: df.assign(v=1).set_index(['Col X', 'Col Y'])['v'].unstack(fill_value=0)
Out[492]:
Col Y cat 1 cat 2 cat 3
Col X
class 1 1 0 0
class 2 1 0 1
class 3 0 1 0