web-dev-qa-db-fra.com

Tensorflow Deep MNIST: Ressource épuisée: MOO lors de l'allocation du tenseur avec la forme [10000,32,28,28]

Voici l'exemple de code MNIST que j'utilise:

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

import tensorflow as tf
sess = tf.InteractiveSession()

x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])

W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))

y = tf.nn.softmax(tf.matmul(x,W) + b)

def weight_variable(shape):
  initial = tf.truncated_normal(shape, stddev=0.1)
  return tf.Variable(initial)

def bias_variable(shape):
  initial = tf.constant(0.1, shape=shape)
  return tf.Variable(initial)


def conv2d(x, W):
  return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
  return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                        strides=[1, 2, 2, 1], padding='SAME')


W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])


x_image = tf.reshape(x, [-1,28,28,1])

h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

init = tf.initialize_all_variables()
config = tf.ConfigProto()
config.gpu_options.allocator_type = 'BFC'
with tf.Session(config = config) as s:
  sess.run(init)

for i in range(20000):
  batch = mnist.train.next_batch(50)
  if i%100 == 0:
    train_accuracy = accuracy.eval(feed_dict={
        x:batch[0], y_: batch[1], keep_prob: 1.0})
    print("step %d, training accuracy %g"%(i, train_accuracy))
  train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g"%accuracy.eval(feed_dict={
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

Le GPU que j'utilise est: GeForce GTX 750 Ti

Erreur:

...
...
...
step 19900, training accuracy 1
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (256):   Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (512):   Total Chunks: 1, Chunks in use: 0 768B allocated for chunks. 1.20MiB client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (1024):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (2048):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (4096):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (8192):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (16384):     Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (32768):     Total Chunks: 1, Chunks in use: 0 36.8KiB allocated for chunks. 4.79MiB client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (65536):     Total Chunks: 1, Chunks in use: 0 78.5KiB allocated for chunks. 4.79MiB client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (131072):    Total Chunks: 1, Chunks in use: 0 200.0KiB allocated for chunks. 153.1KiB client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (262144):    Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (524288):    Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (1048576):   Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (2097152):   Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (4194304):   Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (8388608):   Total Chunks: 1, Chunks in use: 0 11.86MiB allocated for chunks. 390.6KiB client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (16777216):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (33554432):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (67108864):  Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (134217728):     Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:639] Bin (268435456):     Total Chunks: 0, Chunks in use: 0 0B allocated for chunks. 0B client-requested for chunks. 0B in use in bin. 0B client-requested in use in bin.
I tensorflow/core/common_runtime/bfc_allocator.cc:656] Bin for 957.03MiB was 256.00MiB, Chunk State: 
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a40000 of size 1280
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a40500 of size 1280
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a40a00 of size 31488
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a48500 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a48600 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a48700 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a48800 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a48900 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a48a00 of size 4096
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a49a00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a49b00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a49c00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a49d00 of size 3328
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a4aa00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a4ab00 of size 204800
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a7cb00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x601a7cc00 of size 12845056
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026bcc00 of size 4096
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026bdc00 of size 40960
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026c7c00 of size 31488
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cf700 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cf800 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cf900 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cfa00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cfb00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cfc00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cfd00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cfe00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026cff00 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026d0000 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026d0100 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026d0500 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026d0600 of size 3328
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026d1300 of size 40960
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6026db300 of size 80128
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x602702600 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x602734700 of size 204800
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x603342700 of size 4096
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x603343700 of size 3328
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334d700 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334d800 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334d900 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334da00 of size 3328
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334e700 of size 3328
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334f400 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334f500 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x60334f600 of size 204800
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x603381600 of size 204800
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6033b3600 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6033b3700 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6033b3800 of size 12845056
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x603ff3800 of size 12845056
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x604c33800 of size 4096
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x604c34800 of size 4096
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x604c35800 of size 40960
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x604c3f800 of size 40960
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x604c49800 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x604c49900 of size 256
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x604c49a00 of size 13053184
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6058bc700 of size 31360000
I tensorflow/core/common_runtime/bfc_allocator.cc:674] Chunk at 0x6076a4b00 of size 1801385216
I tensorflow/core/common_runtime/bfc_allocator.cc:683] Free at 0x6026d0200 of size 768
I tensorflow/core/common_runtime/bfc_allocator.cc:683] Free at 0x6026eec00 of size 80384
I tensorflow/core/common_runtime/bfc_allocator.cc:683] Free at 0x602702700 of size 204800
I tensorflow/core/common_runtime/bfc_allocator.cc:683] Free at 0x602766700 of size 12435456
I tensorflow/core/common_runtime/bfc_allocator.cc:683] Free at 0x603344400 of size 37632
I tensorflow/core/common_runtime/bfc_allocator.cc:689]      Summary of in-use Chunks by size: 
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 32 Chunks of size 256 totalling 8.0KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 2 Chunks of size 1280 totalling 2.5KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 5 Chunks of size 3328 totalling 16.2KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 5 Chunks of size 4096 totalling 20.0KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 2 Chunks of size 31488 totalling 61.5KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 4 Chunks of size 40960 totalling 160.0KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 1 Chunks of size 80128 totalling 78.2KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 4 Chunks of size 204800 totalling 800.0KiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 3 Chunks of size 12845056 totalling 36.75MiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 1 Chunks of size 13053184 totalling 12.45MiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 1 Chunks of size 31360000 totalling 29.91MiB
I tensorflow/core/common_runtime/bfc_allocator.cc:692] 1 Chunks of size 1801385216 totalling 1.68GiB
I tensorflow/core/common_runtime/bfc_allocator.cc:696] Sum Total of in-use chunks: 1.76GiB
I tensorflow/core/common_runtime/bfc_allocator.cc:698] Stats: 
Limit:                  1898266624
InUse:                  1885507584
MaxInUse:               1885907712
NumAllocs:                 2387902
MaxAllocSize:           1801385216

W tensorflow/core/common_runtime/bfc_allocator.cc:270] **********************************************************xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
W tensorflow/core/common_runtime/bfc_allocator.cc:271] Ran out of memory trying to allocate 957.03MiB.  See logs for memory state.
W tensorflow/core/framework/op_kernel.cc:968] Resource exhausted: OOM when allocating tensor with shape[10000,32,28,28]
Traceback (most recent call last):
  File "trainer_deepMnist.py", line 109, in <module>
    x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 559, in eval
    return _eval_using_default_session(self, feed_dict, self.graph, session)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 3648, in _eval_using_default_session
    return session.run(tensors, feed_dict)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 710, in run
    run_metadata_ptr)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 908, in _run
    feed_dict_string, options, run_metadata)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 958, in _do_run
    target_list, options, run_metadata)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 978, in _do_call
    raise type(e)(node_def, op, message)
tensorflow.python.framework.errors.ResourceExhaustedError: OOM when allocating tensor with shape[10000,32,28,28]
     [[Node: Conv2D = Conv2D[T=DT_FLOAT, data_format="NHWC", padding="SAME", strides=[1, 1, 1, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/gpu:0"](Reshape, Variable_2/read)]]
Caused by op u'Conv2D', defined at:
  File "trainer_deepMnist.py", line 61, in <module>
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
  File "trainer_deepMnist.py", line 46, in conv2d
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/ops/gen_nn_ops.py", line 394, in conv2d
    data_format=data_format, name=name)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/op_def_library.py", line 703, in apply_op
    op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 2320, in create_op
    original_op=self._default_original_op, op_def=op_def)
  File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/framework/ops.py", line 1239, in __init__
    self._traceback = _extract_stack()

J'ai lu certains problèmes de github ( ici , ici ) liés au même problème mais je ne pouvais pas comprendre comment je devais changer mon code pour résoudre ce problème.

15
Abhijay Ghildyal

Voici comment j'ai résolu ce problème: l'erreur signifie que le GPU manque de mémoire lors de l'évaluation de la précision. Par conséquent, il a besoin d'un ensemble de données de plus petite taille, ce qui peut être réalisé en utilisant des données par lots. Ainsi, au lieu d'exécuter le code sur l'ensemble de données de test, il doit être exécuté par lots, comme mentionné dans cet article: Comment lire les données par lots lors de l'utilisation de TensorFlow

Par conséquent, pour l'évaluation de la précision sur l'ensemble de données de test, au lieu de ce loc:

print("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

cela peut être utilisé:

for i in xrange(10):
    testSet = mnist.test.next_batch(50)
    print("test accuracy %g"%accuracy.eval(feed_dict={ x: testSet[0], y_: testSet[1], keep_prob: 1.0}))

Quand j'ai couru 1000 epochs pour training et utilisé 10 batches de batch_size = 50 pour accuracy evaluation, J'ai obtenu les résultats suivants:

step 0, training accuracy 0.04
step 100, training accuracy 0.88
step 200, training accuracy 0.9
step 300, training accuracy 0.88
step 400, training accuracy 0.94
step 500, training accuracy 0.96
step 600, training accuracy 0.94
step 700, training accuracy 0.96
step 800, training accuracy 0.9
step 900, training accuracy 1
test accuracy 1
test accuracy 0.92
test accuracy 1
test accuracy 1
test accuracy 0.94
test accuracy 0.96
test accuracy 0.92
test accuracy 0.96
test accuracy 0.92
test accuracy 0.94
31
Abhijay Ghildyal

En complément de la réponse d'Abhijay, vous pouvez facilement obtenir la précision moyenne à travers les minibatches de test

accuracy_sum = tf.reduce_sum(tf.cast(correct_prediction, tf.float32))
good = 0
total = 0
for i in xrange(10):
    testSet = mnist.test.next_batch(50)
    good += accuracy_sum.eval(feed_dict={ x: testSet[0], y_: testSet[1], keep_prob: 1.0})
    total += testSet[0].shape[0]
print("test accuracy %g"%(good/total))
8
Maxim