web-dev-qa-db-fra.com

TensorFlow Impossible d'alimenter la valeur de la forme (100, 784) pour Tensor 'Placeholder: 0'

Je suis en train d'apprendre TensorFLow. Donc, pour comprendre comment créer quelque chose, j'ai essayé de copier du code d'une source et de l'exécuter. Mais je frappe un message d'erreur. J'ai donc essayé une solution de ce site mais cela ne fonctionne pas (j'ai gardé mon test dans les commentaires). 

    """programme 1 """
import tensorflow as tf 
import numpy as np

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)





X = tf.placeholder(tf.float32,[None, 28, 28, 1]) #28 * 28 taille image 1 = 1pixel car noir et blanc "X" valeur
W = tf.Variable(tf.zeros([784, 10])) # 28*28 = 784 , 10 -> 0 à 9  "W" = weight = poid
b = tf.Variable(tf.zeros([10])) #chiffre de 0 à 9 a reconnaitre "b" = constante 
init = tf.initialize_all_variables()

#model
Y = tf.nn.softmax(tf.matmul(tf.reshape(X,[-1, 784]), W) + b) #fonction "matmul": produit matriciel "-1": reussite obligatoire

#Place holder
Y_ = tf.placeholder(tf.float32, [None, 10])

#loss function
cross_entropy = -1 * tf.reduce_sum(Y_ * tf.log(Y)) #formule

# % of correct annwer found in batch
is_correct = tf.equal(tf.argmax(Y,1),tf.argmax(Y_,1))
accuracy = tf.reduce_mean(tf.cast(is_correct,tf.float32))

#training step
optimizer = tf.train.GradientDescentOptimizer(0.003) #petit pas
train_step = optimizer.minimize(cross_entropy)

sess = tf.Session()
sess.run(init) 

for i in range(10000):
    #load batch of image and ocrrects answer
    batch_X, batch_Y = mnist.train.next_batch(100)
    batch_X = np.reshape(batch_X, (-1, 784))
    #batch_Y = np.reshape(batch_Y, (-1, 784))

    train_data = {X: batch_X, Y_: batch_Y}

    #train
    sess.run(train_step, feed_dict=train_data)

    a,c = sess.run([accuracy,cross_entropy],feed = train_data)

    test_data = {X:mnist.test.images, Y_:mnist.test.labels}
    a,c = sess.run([accuracy,cross_entropy],feed = test_data)

le journal :

    Traceback (most recent call last):
  File "d:\tensorflow\test1.py", line 46, in <module>
    sess.run(train_step, feed_dict=train_data)
  File "C:\Users\Proprietaire\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 895, in run
    run_metadata_ptr)
  File "C:\Users\Proprietaire\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\client\session.py", line 1100, in _run
    % (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (100, 784) for Tensor 'Placeholder:0', which has shape '(?, 28, 28, 1)'
2017-08-30 19:07:37.406994: W C:\tf_jenkins\home\workspace\rel-win\M\windows\PY\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.

la ligne 46 est 

sess.run(train_step, feed_dict=train_data)

Que puis-je faire pour résoudre cette erreur?

3
Thomas chatellier

Vous obtenez cette erreur car il y a un décalage entre la forme de ce que vous alimentez et ce que TensorFlow attend. Pour résoudre le problème, vous pouvez redéfinir vos données à l'aide de placeholder:0, qui est batch_X en (?, 28, 28, 1). Par exemple, vous feriez ce qui suit:

batch_X = np.reshape(batch_X, (-1, 28, 28, 1))
1
Heapify

Vous devez remodeler X.

    X = tf.placeholder(tf.float32 , [None ,28 , 28 , 1])
    X = tf.reshape(X , [-1 , 784])
0
Karthik ziffer