web-dev-qa-db-fra.com

Tensorflow - ValueError: échec de conversion d'un tableau NumPy en un tenseur (flottant de type d'objet non pris en charge)

Suite de la question précédente: Tensorflow - TypeError: l'objet 'int' n'est pas itérable

Mes données d'entraînement sont une liste de listes comprenant chacune 1 000 flotteurs. Par exemple, x_train[0] =

[0.0, 0.0, 0.1, 0.25, 0.5, ...]

Voici mon modèle:

model = Sequential()

model.add(LSTM(128, activation='relu',
               input_shape=(1000, 1), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(128, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))

opt = tf.keras.optimizers.Adam(lr=1e-3, decay=1e-5)

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=3, validation_data=(x_test, y_test))

Voici l'erreur que je reçois:

Traceback (most recent call last):
      File "C:\Users\bencu\Desktop\ProjectFiles\Code\Program.py", line 88, in FitModel
        model.fit(x_train, y_train, epochs=3, validation_data=(x_test, y_test))
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 728, in fit
        use_multiprocessing=use_multiprocessing)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 224, in fit
        distribution_strategy=strategy)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 547, in _process_training_inputs
        use_multiprocessing=use_multiprocessing)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 606, in _process_inputs
        use_multiprocessing=use_multiprocessing)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\data_adapter.py", line 479, in __init__
        batch_size=batch_size, shuffle=shuffle, **kwargs)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\keras\engine\data_adapter.py", line 321, in __init__
        dataset_ops.DatasetV2.from_tensors(inputs).repeat()
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\data\ops\dataset_ops.py", line 414, in from_tensors
        return TensorDataset(tensors)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\data\ops\dataset_ops.py", line 2335, in __init__
        element = structure.normalize_element(element)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\data\util\structure.py", line 111, in normalize_element
        ops.convert_to_tensor(t, name="component_%d" % i))
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1184, in convert_to_tensor
        return convert_to_tensor_v2(value, dtype, preferred_dtype, name)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1242, in convert_to_tensor_v2
        as_ref=False)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\ops.py", line 1296, in internal_convert_to_tensor
        ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\tensor_conversion_registry.py", line 52, in _default_conversion_function
        return constant_op.constant(value, dtype, name=name)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\constant_op.py", line 227, in constant
        allow_broadcast=True)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\constant_op.py", line 235, in _constant_impl
        t = convert_to_eager_tensor(value, ctx, dtype)
      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\constant_op.py", line 96, in convert_to_eager_tensor
        return ops.EagerTensor(value, ctx.device_name, dtype)
    ValueError: Failed to convert a NumPy array to a Tensor (Unsupported object type float).

J'ai essayé de googler l'erreur moi-même, j'ai trouvé quelque chose sur l'utilisation du tf.convert_to_tensor fonction. J'ai essayé de passer mes listes de formation et de test à travers cela, mais la fonction ne les prendra pas.

Toute aide serait massivement appreciee. Merci.

6
SuperHanz98

Cela pourrait également se produire en raison d'une différence de versions (j'ai dû revenir de tensorflow 2.1.0 à 2.0.0.beta1 pour résoudre ce problème).

1
rosyaniv

Après avoir essayé tout ce qui précède sans succès, j'ai constaté que mon problème était qu'une des colonnes de mes données avait des valeurs boolean. Tout convertir en np.float32 a résolu le problème!

import numpy as np

X = np.asarray(X).astype(np.float32)
1

J'avais de nombreuses entrées et variables cibles différentes et je ne savais pas laquelle causait le problème.

Pour savoir sur quelle variable il se casse, vous pouvez ajouter une valeur d'impression dans le package de bibliothèque sa le chemin d'accès est spécifié dans votre strace de pile:

      File "C:\Users\bencu\AppData\Local\Programs\Python\Python37\lib\site-packages\tensorflow_core\python\framework\constant_op.py", line 96, in convert_to_eager_tensor
        return ops.EagerTensor(value, ctx.device_name, 

L'ajout d'une instruction print dans cette partie du code m'a permis de voir quelle entrée était à l'origine du problème:

constant_op.py:

  ....
      dtype = dtype.as_datatype_enum
    except AttributeError:
      dtype = dtypes.as_dtype(dtype).as_datatype_enum
  ctx.ensure_initialized()
  print(value) # <--------------------- PUT PRINT HERE
  return ops.EagerTensor(value, ctx.device_name, dtype)

Après avoir observé quelle valeur était problématique, la conversion de int en astype(np.float32) a résolu le problème.

0
Igor