web-dev-qa-db-fra.com

Trouver la valeur p (signification) dans scikit-learn LinearRegression

Comment puis-je trouver la valeur p (signification) de chaque coefficient?

lm = sklearn.linear_model.LinearRegression()
lm.fit(x,y)
120
elplatt

C'est un peu exagéré, mais essayons. Premièrement, utilisons statsmodel pour savoir ce que devraient être les p-values

import pandas as pd
import numpy as np
from sklearn import datasets, linear_model
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
from scipy import stats

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

X2 = sm.add_constant(X)
est = sm.OLS(y, X2)
est2 = est.fit()
print(est2.summary())

et nous obtenons

                         OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.518
Model:                            OLS   Adj. R-squared:                  0.507
Method:                 Least Squares   F-statistic:                     46.27
Date:                Wed, 08 Mar 2017   Prob (F-statistic):           3.83e-62
Time:                        10:08:24   Log-Likelihood:                -2386.0
No. Observations:                 442   AIC:                             4794.
Df Residuals:                     431   BIC:                             4839.
Df Model:                          10                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const        152.1335      2.576     59.061      0.000     147.071     157.196
x1           -10.0122     59.749     -0.168      0.867    -127.448     107.424
x2          -239.8191     61.222     -3.917      0.000    -360.151    -119.488
x3           519.8398     66.534      7.813      0.000     389.069     650.610
x4           324.3904     65.422      4.958      0.000     195.805     452.976
x5          -792.1842    416.684     -1.901      0.058   -1611.169      26.801
x6           476.7458    339.035      1.406      0.160    -189.621    1143.113
x7           101.0446    212.533      0.475      0.635    -316.685     518.774
x8           177.0642    161.476      1.097      0.273    -140.313     494.442
x9           751.2793    171.902      4.370      0.000     413.409    1089.150
x10           67.6254     65.984      1.025      0.306     -62.065     197.316
==============================================================================
Omnibus:                        1.506   Durbin-Watson:                   2.029
Prob(Omnibus):                  0.471   Jarque-Bera (JB):                1.404
Skew:                           0.017   Prob(JB):                        0.496
Kurtosis:                       2.726   Cond. No.                         227.
==============================================================================

Ok, reproduisons ça. C'est un peu exagéré, car nous reproduisons presque une analyse de régression linéaire utilisant l'algèbre matricielle. Mais que diable.

lm = LinearRegression()
lm.fit(X,y)
params = np.append(lm.intercept_,lm.coef_)
predictions = lm.predict(X)

newX = pd.DataFrame({"Constant":np.ones(len(X))}).join(pd.DataFrame(X))
MSE = (sum((y-predictions)**2))/(len(newX)-len(newX.columns))

# Note if you don't want to use a DataFrame replace the two lines above with
# newX = np.append(np.ones((len(X),1)), X, axis=1)
# MSE = (sum((y-predictions)**2))/(len(newX)-len(newX[0]))

var_b = MSE*(np.linalg.inv(np.dot(newX.T,newX)).diagonal())
sd_b = np.sqrt(var_b)
ts_b = params/ sd_b

p_values =[2*(1-stats.t.cdf(np.abs(i),(len(newX)-1))) for i in ts_b]

sd_b = np.round(sd_b,3)
ts_b = np.round(ts_b,3)
p_values = np.round(p_values,3)
params = np.round(params,4)

myDF3 = pd.DataFrame()
myDF3["Coefficients"],myDF3["Standard Errors"],myDF3["t values"],myDF3["Probabilites"] = [params,sd_b,ts_b,p_values]
print(myDF3)

Et cela nous donne.

    Coefficients  Standard Errors  t values  Probabilites
0       152.1335            2.576    59.061         0.000
1       -10.0122           59.749    -0.168         0.867
2      -239.8191           61.222    -3.917         0.000
3       519.8398           66.534     7.813         0.000
4       324.3904           65.422     4.958         0.000
5      -792.1842          416.684    -1.901         0.058
6       476.7458          339.035     1.406         0.160
7       101.0446          212.533     0.475         0.635
8       177.0642          161.476     1.097         0.273
9       751.2793          171.902     4.370         0.000
10       67.6254           65.984     1.025         0.306

Nous pouvons donc reproduire les valeurs de statsmodel.

111
JARH

linearRegression de scikit-learn ne calcule pas cette information, mais vous pouvez facilement étendre la classe pour le faire:

from sklearn import linear_model
from scipy import stats
import numpy as np


class LinearRegression(linear_model.LinearRegression):
    """
    LinearRegression class after sklearn's, but calculate t-statistics
    and p-values for model coefficients (betas).
    Additional attributes available after .fit()
    are `t` and `p` which are of the shape (y.shape[1], X.shape[1])
    which is (n_features, n_coefs)
    This class sets the intercept to 0 by default, since usually we include it
    in X.
    """

    def __init__(self, *args, **kwargs):
        if not "fit_intercept" in kwargs:
            kwargs['fit_intercept'] = False
        super(LinearRegression, self)\
                .__init__(*args, **kwargs)

    def fit(self, X, y, n_jobs=1):
        self = super(LinearRegression, self).fit(X, y, n_jobs)

        sse = np.sum((self.predict(X) - y) ** 2, axis=0) / float(X.shape[0] - X.shape[1])
        se = np.array([
            np.sqrt(np.diagonal(sse[i] * np.linalg.inv(np.dot(X.T, X))))
                                                    for i in range(sse.shape[0])
                    ])

        self.t = self.coef_ / se
        self.p = 2 * (1 - stats.t.cdf(np.abs(self.t), y.shape[0] - X.shape[1]))
        return self

Volé de ici .

Vous devriez jeter un oeil à statsmodels pour ce type d'analyse statistique en Python.

44
elyase

Vous pouvez utiliser sklearn.feature_selection.f_regression.

cliquez ici pour la page scikit-learn

14
Pinna_be

Le code dans la réponse d'elyase https://stackoverflow.com/a/27928411/424041 ne fonctionne pas réellement. Notez que sse est un scalaire, puis il essaie de le parcourir. Le code suivant est une version modifiée. Pas incroyablement propre, mais je pense que cela fonctionne plus ou moins.

class LinearRegression(linear_model.LinearRegression):

    def __init__(self,*args,**kwargs):
        # *args is the list of arguments that might go into the LinearRegression object
        # that we don't know about and don't want to have to deal with. Similarly, **kwargs
        # is a dictionary of key words and values that might also need to go into the orginal
        # LinearRegression object. We put *args and **kwargs so that we don't have to look
        # these up and write them down explicitly here. Nice and easy.

        if not "fit_intercept" in kwargs:
            kwargs['fit_intercept'] = False

        super(LinearRegression,self).__init__(*args,**kwargs)

    # Adding in t-statistics for the coefficients.
    def fit(self,x,y):
        # This takes in numpy arrays (not matrices). Also assumes you are leaving out the column
        # of constants.

        # Not totally sure what 'super' does here and why you redefine self...
        self = super(LinearRegression, self).fit(x,y)
        n, k = x.shape
        yHat = np.matrix(self.predict(x)).T

        # Change X and Y into numpy matricies. x also has a column of ones added to it.
        x = np.hstack((np.ones((n,1)),np.matrix(x)))
        y = np.matrix(y).T

        # Degrees of freedom.
        df = float(n-k-1)

        # Sample variance.     
        sse = np.sum(np.square(yHat - y),axis=0)
        self.sampleVariance = sse/df

        # Sample variance for x.
        self.sampleVarianceX = x.T*x

        # Covariance Matrix = [(s^2)(X'X)^-1]^0.5. (sqrtm = matrix square root.  ugly)
        self.covarianceMatrix = sc.linalg.sqrtm(self.sampleVariance[0,0]*self.sampleVarianceX.I)

        # Standard erros for the difference coefficients: the diagonal elements of the covariance matrix.
        self.se = self.covarianceMatrix.diagonal()[1:]

        # T statistic for each beta.
        self.betasTStat = np.zeros(len(self.se))
        for i in xrange(len(self.se)):
            self.betasTStat[i] = self.coef_[0,i]/self.se[i]

        # P-value for each beta. This is a two sided t-test, since the betas can be 
        # positive or negative.
        self.betasPValue = 1 - t.cdf(abs(self.betasTStat),df)
8
Alex

Une méthode simple pour extraire les valeurs p consiste à utiliser la régression de statsmodels:

import statsmodels.api as sm
mod = sm.OLS(Y,X)
fii = mod.fit()
p_values = fii.summary2().tables[1]['P>|t|']

Vous obtenez une série de valeurs-p que vous pouvez manipuler (par exemple, choisissez l'ordre que vous souhaitez conserver en évaluant chaque valeur-p):

enter image description here

4
benaou mouad

Il pourrait y avoir une erreur dans la réponse de @ JARH dans le cas d'une régression multivariable. (Je n'ai pas assez de réputation pour commenter.)

Dans la ligne suivante:

p_values =[2*(1-stats.t.cdf(np.abs(i),(len(newX)-1))) for i in ts_b],

les valeurs t suivent un distribution du khi-carré du degré len(newX)-1 au lieu de suivre une distribution du khi-carré du degré len(newX)-len(newX.columns)-1.

Donc, cela devrait être:

p_values =[2*(1-stats.t.cdf(np.abs(i),(len(newX)-len(newX.columns)-1))) for i in ts_b]

(Voir valeurs t pour la régression MCO pour plus de détails)

3
Jules K

la valeur p est parmi f statistiques. si vous voulez obtenir la valeur, utilisez simplement ces quelques lignes de code:

import statsmodels.api as sm
from scipy import stats

diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

X2 = sm.add_constant(X)
est = sm.OLS(y, X2)
print(est.fit().f_pvalue)
2
Afshin Amiri

Vous pouvez utiliser scipy pour la valeur p. Ce code provient de la documentation scipy.

>>> from scipy import stats
>>> import numpy as np
>>> x = np.random.random(10)
>>> y = np.random.random(10)
>>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
2
Ali Mirzaei