web-dev-qa-db-fra.com

TypeError: seuls les tableaux entiers avec un élément peuvent être convertis en index

J'obtiens l'erreur suivante lors de la sélection d'une fonction récursive avec validation croisée:

Traceback (most recent call last):
  File "/Users/.../srl/main.py", line 32, in <module>
    argident_sys.train_classifier()
  File "/Users/.../srl/identification.py", line 194, in train_classifier
    feat_selector.fit(train_argcands_feats,train_argcands_target)
  File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/sklearn/feature_selection/rfe.py", line 298, in fit
    ranking_ = rfe.fit(X[train], y[train]).ranking_
TypeError: only integer arrays with one element can be converted to an index

Le code qui génère l'erreur est le suivant:

def train_classifier(self):

    # Get the argument candidates
    argcands = self.get_argcands(self.reader)

    # Extract the necessary features from the argument candidates
    train_argcands_feats = []
    train_argcands_target = []

    for argcand in argcands:
        train_argcands_feats.append(self.extract_features(argcand))
        if argcand["info"]["label"] == "NULL":
            train_argcands_target.append("NULL")
        else:
            train_argcands_target.append("ARG")

    # Transform the features to the format required by the classifier
    self.feat_vectorizer = DictVectorizer()
    train_argcands_feats = self.feat_vectorizer.fit_transform(train_argcands_feats)

    # Transform the target labels to the format required by the classifier
    self.target_names = list(set(train_argcands_target))
    train_argcands_target = [self.target_names.index(target) for target in train_argcands_target]

    ## Train the appropriate supervised model      

    # Recursive Feature Elimination
    self.classifier = LogisticRegression()
    feat_selector = RFECV(estimator=self.classifier, step=1, cv=StratifiedKFold(train_argcands_target, 10))

    feat_selector.fit(train_argcands_feats,train_argcands_target)

    print feat_selector.n_features_
    print feat_selector.support_
    print feat_selector.ranking_
    print feat_selector.cv_scores_

    return

Je sais que je devrais également effectuer GridSearch pour les paramètres du classificateur LogisticRegression, mais je ne pense pas que ce soit la source de l'erreur (ou est-ce?).

Je dois mentionner que je teste avec environ 50 fonctionnalités, et presque toutes sont catégoriques (c'est pourquoi j'utilise le DictVectorizer pour les transformer de manière appropriée).

Toute aide ou conseil que vous pourriez me donner est plus que bienvenu. Merci!

MODIFIER

Voici quelques exemples de données de formation:

train_argcands_feats = [{'head_lemma': u'Bras\xedlia', 'head': u'Bras\xedlia', 'head_postag': u'PROP'}, {'head_lemma': u'Pesquisa_Datafolha', 'head': u'Pesquisa_Datafolha', 'head_postag': u'N'}, {'head_lemma': u'dado', 'head': u'dado', 'head_postag': u'N'}, {'head_lemma': u'postura', 'head': u'postura', 'head_postag': u'N'}, {'head_lemma': u'maioria', 'head': u'maioria', 'head_postag': u'N'}, {'head_lemma': u'querer', 'head': u'quer', 'head_postag': u'V-FIN'}, {'head_lemma': u'PT', 'head': u'PT', 'head_postag': u'PROP'}, {'head_lemma': u'participar', 'head': u'participando', 'head_postag': u'V-GER'}, {'head_lemma': u'surpreendente', 'head': u'supreendente', 'head_postag': u'ADJ'}, {'head_lemma': u'Bras\xedlia', 'head': u'Bras\xedlia', 'head_postag': u'PROP'}, {'head_lemma': u'Pesquisa_Datafolha', 'head': u'Pesquisa_Datafolha', 'head_postag': u'N'}, {'head_lemma': u'revelar', 'head': u'revela', 'head_postag': u'V-FIN'}, {'head_lemma': u'recusar', 'head': u'recusando', 'head_postag': u'V-GER'}, {'head_lemma': u'maioria', 'head': u'maioria', 'head_postag': u'N'}, {'head_lemma': u'PT', 'head': u'PT', 'head_postag': u'PROP'}, {'head_lemma': u'participar', 'head': u'participando', 'head_postag': u'V-GER'}, {'head_lemma': u'surpreendente', 'head': u'supreendente', 'head_postag': u'ADJ'}, {'head_lemma': u'Bras\xedlia', 'head': u'Bras\xedlia', 'head_postag': u'PROP'}, {'head_lemma': u'Pesquisa_Datafolha', 'head': u'Pesquisa_Datafolha', 'head_postag': u'N'}, {'head_lemma': u'revelar', 'head': u'revela', 'head_postag': u'V-FIN'}, {'head_lemma': u'governo', 'head': u'Governo', 'head_postag': u'N'}, {'head_lemma': u'de', 'head': u'de', 'head_postag': u'PRP'}, {'head_lemma': u'governo', 'head': u'Governo', 'head_postag': u'N'}, {'head_lemma': u'recusar', 'head': u'recusando', 'head_postag': u'V-GER'}, {'head_lemma': u'maioria', 'head': u'maioria', 'head_postag': u'N'}, {'head_lemma': u'querer', 'head': u'quer', 'head_postag': u'V-FIN'}, {'head_lemma': u'PT', 'head': u'PT', 'head_postag': u'PROP'}, {'head_lemma': u'surpreendente', 'head': u'supreendente', 'head_postag': u'ADJ'}, {'head_lemma': u'Bras\xedlia', 'head': u'Bras\xedlia', 'head_postag': u'PROP'}, {'head_lemma': u'Pesquisa_Datafolha', 'head': u'Pesquisa_Datafolha', 'head_postag': u'N'}, {'head_lemma': u'revelar', 'head': u'revela', 'head_postag': u'V-FIN'}, {'head_lemma': u'muito', 'head': u'Muitas', 'head_postag': u'PRON-DET'}, {'head_lemma': u'prioridade', 'head': u'prioridades', 'head_postag': u'N'}, {'head_lemma': u'com', 'head': u'com', 'head_postag': u'PRP'}, {'head_lemma': u'prioridade', 'head': u'prioridades', 'head_postag': u'N'}]

train_argcands_target = ['NULL', 'ARG', 'ARG', 'ARG', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'ARG', 'ARG', 'ARG', 'ARG', 'NULL', 'NULL', 'NULL', 'NULL', 'ARG', 'NULL', 'NULL', 'NULL', 'NULL', 'NULL', 'ARG', 'NULL', 'NULL', 'NULL', 'NULL', 'ARG', 'ARG', 'NULL', 'NULL']
31
feralvam

J'ai finalement réussi à résoudre le problème. Il fallait faire deux choses:

  1. train_argcands_target est une liste et doit être un tableau numpy. Je suis surpris que cela ait bien fonctionné auparavant lorsque je viens d'utiliser directement l'estimateur.
  2. Pour une raison quelconque (je ne sais pas encore pourquoi), cela ne fonctionne pas non plus si j'utilise la matrice creuse créée par le DictVectorizer. J'ai dû, "manuellement", transformer chaque dictionnaire d'entités en un tableau d'entités avec juste des entiers représentant chaque valeur d'entité. Le processus de transformation est similaire à celui que je présente dans le code pour les valeurs cibles.

Merci à tous ceux qui ont essayé d'aider!

33
feralvam

Si quelqu'un est toujours intéressé,

J'ai utilisé le CountVectorizer sur quelque chose de très similaire et cela m'a donné la même erreur. J'ai réalisé que le vectoriseur me donne une matrice éparse COO qui est essentiellement une liste de coordonnées. Les éléments des matrices COO ne sont pas accessibles via les index de lignes. Il est préférable de le convertir en une matrice CSR (Compressed Sparse Row) qui indexe les lignes. La conversion peut se faire facilement coo_matrix.tocsr(). Aucun autre changement n'est requis, cela a fonctionné pour moi.

11
user926321