Je veux construire un arbre général dont le noeud racine contient 'n' enfants, et ces enfants peuvent contenir d'autres enfants .....
Un arbre en Python est assez simple. Faites une classe qui a des données et une liste d'enfants. Chaque enfant est une instance de la même classe. Ceci est un arbre général nary.
class Node(object):
def __init__(self, data):
self.data = data
self.children = []
def add_child(self, obj):
self.children.append(obj)
Puis interagissez:
>>> n = Node(5)
>>> p = Node(6)
>>> q = Node(7)
>>> n.add_child(p)
>>> n.add_child(q)
>>> n.children
[<__main__.Node object at 0x02877FF0>, <__main__.Node object at 0x02877F90>]
>>> for c in n.children:
... print c.data
...
6
7
>>>
Ceci est un squelette très basique, pas abstrait ou quoi que ce soit. Le code réel dépendra de vos besoins spécifiques. J'essaie simplement de montrer que c'est très simple en Python.
J'ai publié une implémentation d'arbre Python [3] sur mon site: http://www.quesucede.com/page/show/id/python_3_tree_implementation .
J'espère que c'est utile,
Ok, voici le code:
import uuid
def sanitize_id(id):
return id.strip().replace(" ", "")
(_ADD, _DELETE, _INSERT) = range(3)
(_ROOT, _DEPTH, _WIDTH) = range(3)
class Node:
def __init__(self, name, identifier=None, expanded=True):
self.__identifier = (str(uuid.uuid1()) if identifier is None else
sanitize_id(str(identifier)))
self.name = name
self.expanded = expanded
self.__bpointer = None
self.__fpointer = []
@property
def identifier(self):
return self.__identifier
@property
def bpointer(self):
return self.__bpointer
@bpointer.setter
def bpointer(self, value):
if value is not None:
self.__bpointer = sanitize_id(value)
@property
def fpointer(self):
return self.__fpointer
def update_fpointer(self, identifier, mode=_ADD):
if mode is _ADD:
self.__fpointer.append(sanitize_id(identifier))
Elif mode is _DELETE:
self.__fpointer.remove(sanitize_id(identifier))
Elif mode is _INSERT:
self.__fpointer = [sanitize_id(identifier)]
class Tree:
def __init__(self):
self.nodes = []
def get_index(self, position):
for index, node in enumerate(self.nodes):
if node.identifier == position:
break
return index
def create_node(self, name, identifier=None, parent=None):
node = Node(name, identifier)
self.nodes.append(node)
self.__update_fpointer(parent, node.identifier, _ADD)
node.bpointer = parent
return node
def show(self, position, level=_ROOT):
queue = self[position].fpointer
if level == _ROOT:
print("{0} [{1}]".format(self[position].name, self[position].identifier))
else:
print("\t"*level, "{0} [{1}]".format(self[position].name, self[position].identifier))
if self[position].expanded:
level += 1
for element in queue:
self.show(element, level) # recursive call
def expand_tree(self, position, mode=_DEPTH):
# Python generator. Loosly based on an algorithm from 'Essential LISP' by
# John R. Anderson, Albert T. Corbett, and Brian J. Reiser, page 239-241
yield position
queue = self[position].fpointer
while queue:
yield queue[0]
expansion = self[queue[0]].fpointer
if mode is _DEPTH:
queue = expansion + queue[1:] # depth-first
Elif mode is _WIDTH:
queue = queue[1:] + expansion # width-first
def is_branch(self, position):
return self[position].fpointer
def __update_fpointer(self, position, identifier, mode):
if position is None:
return
else:
self[position].update_fpointer(identifier, mode)
def __update_bpointer(self, position, identifier):
self[position].bpointer = identifier
def __getitem__(self, key):
return self.nodes[self.get_index(key)]
def __setitem__(self, key, item):
self.nodes[self.get_index(key)] = item
def __len__(self):
return len(self.nodes)
def __contains__(self, identifier):
return [node.identifier for node in self.nodes if node.identifier is identifier]
if __== "__main__":
tree = Tree()
tree.create_node("Harry", "harry") # root node
tree.create_node("Jane", "jane", parent = "harry")
tree.create_node("Bill", "bill", parent = "harry")
tree.create_node("Joe", "joe", parent = "jane")
tree.create_node("Diane", "diane", parent = "jane")
tree.create_node("George", "george", parent = "diane")
tree.create_node("Mary", "mary", parent = "diane")
tree.create_node("Jill", "jill", parent = "george")
tree.create_node("Carol", "carol", parent = "jill")
tree.create_node("Grace", "grace", parent = "bill")
tree.create_node("Mark", "mark", parent = "jane")
print("="*80)
tree.show("harry")
print("="*80)
for node in tree.expand_tree("harry", mode=_WIDTH):
print(node)
print("="*80)
Je recommande https://pypi.python.org/pypi/anytree
from anytree import Node, RenderTree
udo = Node("Udo")
marc = Node("Marc", parent=udo)
lian = Node("Lian", parent=marc)
dan = Node("Dan", parent=udo)
jet = Node("Jet", parent=dan)
jan = Node("Jan", parent=dan)
joe = Node("Joe", parent=dan)
print(udo)
Node('/Udo')
print(joe)
Node('/Udo/Dan/Joe')
for pre, fill, node in RenderTree(udo):
print("%s%s" % (pre, node.name))
Udo
├── Marc
│ └── Lian
└── Dan
├── Jet
├── Jan
└── Joe
print(dan.children)
(Node('/Udo/Dan/Jet'), Node('/Udo/Dan/Jan'), Node('/Udo/Dan/Joe'))
anytree dispose également d'une API puissante avec:
node = { 'parent':0, 'left':0, 'right':0 }
import copy
root = copy.deepcopy(node)
root['parent'] = -1
left = copy
juste pour montrer une autre pensée sur la mise en œuvre si vous vous en tenez à la "POO"
class Node:
def __init__(self,data):
self.data = data
self.child = {}
def append(self, title, child):
self.child[title] = child
CEO = Node( ('ceo', 1000) )
CTO = ('cto',100)
CFO = ('cfo', 10)
CEO.append('left child', CTO)
CEO.append('right child', CFO)
print CEO.data
print ' ', CEO.child['left child']
print ' ', CEO.child['right child']