web-dev-qa-db-fra.com

ValueError: Nombre incorrect d'éléments transmis - Signification et suggestions?

Je reçois l’erreur: ValueError: Wrong number of items passed 3, placement implies 1, et j’ai du mal à comprendre où et comment je pourrais commencer à traiter le problème.

Je ne comprends pas vraiment le sens de l'erreur. ce qui rend difficile pour moi de dépanner. J'ai également inclus le bloc de code qui provoque l'erreur dans mon bloc-notes Jupyter.

Les données sont difficiles à attacher; Je ne cherche donc personne pour essayer de recréer cette erreur pour moi. Je suis juste à la recherche de commentaires sur la façon dont je pourrais remédier à cette erreur.

KeyError                                  Traceback (most recent call last)
C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\indexes\base.py in get_loc(self, key, method, tolerance)
   1944             try:
-> 1945                 return self._engine.get_loc(key)
   1946             except KeyError:

pandas\index.pyx in pandas.index.IndexEngine.get_loc (pandas\index.c:4154)()

pandas\index.pyx in pandas.index.IndexEngine.get_loc (pandas\index.c:4018)()

pandas\hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas\hashtable.c:12368)()

pandas\hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas\hashtable.c:12322)()

KeyError: 'predictedY'

During handling of the above exception, another exception occurred:

KeyError                                  Traceback (most recent call last)
C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\internals.py in set(self, item, value, check)
   3414         try:
-> 3415             loc = self.items.get_loc(item)
   3416         except KeyError:

C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\indexes\base.py in get_loc(self, key, method, tolerance)
   1946             except KeyError:
-> 1947                 return self._engine.get_loc(self._maybe_cast_indexer(key))
   1948 

pandas\index.pyx in pandas.index.IndexEngine.get_loc (pandas\index.c:4154)()

pandas\index.pyx in pandas.index.IndexEngine.get_loc (pandas\index.c:4018)()

pandas\hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas\hashtable.c:12368)()

pandas\hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas\hashtable.c:12322)()

KeyError: 'predictedY'

During handling of the above exception, another exception occurred:

ValueError                                Traceback (most recent call last)
<ipython-input-95-476dc59cd7fa> in <module>()
     26     return gp, results
     27 
---> 28 gp_dailyElectricity, results_dailyElectricity = predictAll(3, 0.04, trainX_dailyElectricity, trainY_dailyElectricity, testX_dailyElectricity, testY_dailyElectricity, testSet_dailyElectricity, 'Daily Electricity')

<ipython-input-95-476dc59cd7fa> in predictAll(theta, nugget, trainX, trainY, testX, testY, testSet, title)
      8 
      9     results = testSet.copy()
---> 10     results['predictedY'] = predictedY
     11     results['sigma'] = sigma
     12 

C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\frame.py in __setitem__(self, key, value)
   2355         else:
   2356             # set column
-> 2357             self._set_item(key, value)
   2358 
   2359     def _setitem_slice(self, key, value):

C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\frame.py in _set_item(self, key, value)
   2422         self._ensure_valid_index(value)
   2423         value = self._sanitize_column(key, value)
-> 2424         NDFrame._set_item(self, key, value)
   2425 
   2426         # check if we are modifying a copy

C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\generic.py in _set_item(self, key, value)
   1462 
   1463     def _set_item(self, key, value):
-> 1464         self._data.set(key, value)
   1465         self._clear_item_cache()
   1466 

C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\internals.py in set(self, item, value, check)
   3416         except KeyError:
   3417             # This item wasn't present, just insert at end
-> 3418             self.insert(len(self.items), item, value)
   3419             return
   3420 

C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\internals.py in insert(self, loc, item, value, allow_duplicates)
   3517 
   3518         block = make_block(values=value, ndim=self.ndim,
-> 3519                            placement=slice(loc, loc + 1))
   3520 
   3521         for blkno, count in _fast_count_smallints(self._blknos[loc:]):

C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\internals.py in make_block(values, placement, klass, ndim, dtype, fastpath)
   2516                      placement=placement, dtype=dtype)
   2517 
-> 2518     return klass(values, ndim=ndim, fastpath=fastpath, placement=placement)
   2519 
   2520 # TODO: flexible with index=None and/or items=None

C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\internals.py in __init__(self, values, placement, ndim, fastpath)
     88             raise ValueError('Wrong number of items passed %d, placement '
     89                              'implies %d' % (len(self.values),
---> 90                                              len(self.mgr_locs)))
     91 
     92     @property

ValueError: Wrong number of items passed 3, placement implies 1

Mon code est le suivant:

def predictAll(theta, nugget, trainX, trainY, testX, testY, testSet, title):

    gp = gaussian_process.GaussianProcess(theta0=theta, nugget =nugget)
    gp.fit(trainX, trainY)

    predictedY, MSE = gp.predict(testX, eval_MSE = True)
    sigma = np.sqrt(MSE)

    results = testSet.copy()
    results['predictedY'] = predictedY
    results['sigma'] = sigma

    print ("Train score R2:", gp.score(trainX, trainY))
    print ("Test score R2:", sklearn.metrics.r2_score(testY, predictedY))

    plt.figure(figsize = (9,8))
    plt.scatter(testY, predictedY)
    plt.plot([min(testY), max(testY)], [min(testY), max(testY)], 'r')
    plt.xlim([min(testY), max(testY)])
    plt.ylim([min(testY), max(testY)])
    plt.title('Predicted vs. observed: ' + title)
    plt.xlabel('Observed')
    plt.ylabel('Predicted')
    plt.show()

    return gp, results

gp_dailyElectricity, results_dailyElectricity = predictAll(3, 0.04, trainX_dailyElectricity, trainY_dailyElectricity, testX_dailyElectricity, testY_dailyElectricity, testSet_dailyElectricity, 'Daily Electricity')
34
Gary

En général, l'erreur ValueError: Wrong number of items passed 3, placement implies 1 suggère que vous essayez de placer trop de pigeons dans trop peu de casiers. Dans ce cas, la valeur à droite de l'équation

results['predictedY'] = predictedY

essaye de mettre 3 "choses" dans un conteneur qui n'en autorise qu'une. Le côté gauche étant une colonne de structure de données et pouvant accepter plusieurs éléments dans cette dimension (colonne), vous devez voir qu'il y a trop d'éléments dans une autre dimension.

Ici, il semble que vous utilisiez sklearn pour la modélisation, d'où provient gaussian_process.GaussianProcess() (je suppose, mais corrigez-moi et révisez la question si cela ne va pas).

Maintenant, vous générez des valeurs prédites pour y ici:

predictedY, MSE = gp.predict(testX, eval_MSE = True)

Cependant, comme nous pouvons le voir dans la documentation de GaussianProcess , predict() renvoie deux éléments. Le premier est y , qui est semblable à un tableau (l'emphase mienne). Cela signifie qu'il peut avoir plus d'une dimension ou, pour être concret pour les personnes à tête épaisse comme moi, il peut avoir plus d'une colonne - voyez qu'il peut retourner (n_samples, n_targets) qui, selon testX, pourrait être (1000, 3) (juste pour choisir des nombres). Ainsi, votre predictedY pourrait avoir 3 colonnes.

Si tel est le cas, lorsque vous essayez de placer quelque chose avec trois "colonnes" dans une seule colonne de structure de données, vous transmettez 3 éléments auxquels seul 1 pourrait convenir.

33
Savage Henry