web-dev-qa-db-fra.com

Comment calculer les corrélations entre toutes les colonnes dans R et détecter les variables hautement corrélées

J'ai un grand ensemble de données avec 100 variables et 3000 observations. Je veux détecter ces variables (colonnes) qui sont hautement corrélées ou redondantes et ainsi supprimer la dimensonalité dans la trame de données. J'ai essayé cela mais il ne calcule que la corrélation entre une colonne et les autres; et je reçois toujours un message d'erreur

for(i in 1:ncol(predicteurs)){
correlations <- cor(predicteurs[,i],predicteurs[,2])
names(correlations[which.max(abs(correlations))])
}

  Warning messages:
 1: In cor(predicteurs[, i], predicteurs[, 2]) :
the standard deviation is zero
  2: In cor(predicteurs[, i], predicteurs[, 2]) :
 the standard deviation is zero

Quelqu'un peut-il m'aider?

13
Charlotte

Mise à jour pour les nouveaux packages tidyverse ..

J'essaierais de rassembler une matrice de corrélation.

# install.packages(c('tibble', 'dplyr', 'tidyr'))
library(tibble)
library(dplyr)
library(tidyr)

d <- data.frame(x1=rnorm(10),
                x2=rnorm(10),
                x3=rnorm(10))

d2 <- d %>% 
  as.matrix %>%
  cor %>%
  as.data.frame %>%
  rownames_to_column(var = 'var1') %>%
  gather(var2, value, -var1)

  var1 var2       value
1   x1   x1  1.00000000
2   x1   x2 -0.05936703
3   x1   x3 -0.37479619
4   x2   x1 -0.05936703
5   x2   x2  1.00000000
6   x2   x3  0.43716004
7   x3   x1 -0.37479619
8   x3   x2  0.43716004
9   x3   x3  1.00000000

# .5 is an arbitrary number
filter(d2, value > .5)

# remove duplicates
d2 %>%
  mutate(var_order = paste(var1, var2) %>%
           strsplit(split = ' ') %>%
           map_chr( ~ sort(.x) %>% 
                      paste(collapse = ' '))) %>%
  mutate(cnt = 1) %>%
  group_by(var_order) %>%
  mutate(cumsum = cumsum(cnt)) %>%
  filter(cumsum != 2) %>%
  ungroup %>%
  select(-var_order, -cnt, -cumsum)

  var1  var2   value
1 x1    x1     1     
2 x1    x2    -0.0594
3 x1    x3    -0.375 
4 x2    x2     1     
5 x2    x3     0.437 
6 x3    x3     1     
30
maloneypatr

Une autre approche qui semble valide pourrait être:

set.seed(101)
mat = matrix(runif(12), 3)
cor_mat = cor(mat)
cor_mat
#           [,1]       [,2]       [,3]       [,4]
#[1,]  1.0000000  0.1050075  0.9159599 -0.5108936
#[2,]  0.1050075  1.0000000  0.4952340 -0.9085390
#[3,]  0.9159599  0.4952340  1.0000000 -0.8129071
#[4,] -0.5108936 -0.9085390 -0.8129071  1.0000000
which(cor_mat > 0.15 & lower.tri(cor_mat), arr.ind = T, useNames = F)
#     [,1] [,2]
#[1,]    3    1
#[2,]    3    2
8
alexis_laz

J'ai eu le même problème et voici comment je l'ai résolu:

install.packages("Hmisc") # Only run on first use
library(Hmisc)
rawdata <- read.csv("/path/to/your/datafile", sep="\t", stringsAsFactors=FALSE) # In my case the separator in the file was "\t", adjust accordingly.
ccs <- as.matrix(rawdata)
rcorr(ccs, type="pearson") # You can also use "spearman"

Cela a l'avantage sur les autres méthodes de générer vos valeurs de corrélation et les valeurs respectives p -.

6
Stunts