web-dev-qa-db-fra.com

Comment calculer ROC et AUC sous ROC après la formation à l'aide de caret en R?

J'ai utilisé la fonction caret du package train avec une validation croisée 10 fois. J'ai également des probabilités de classe pour les classes prédites en définissant classProbs = TRUE dans trControl, comme suit:

myTrainingControl <- trainControl(method = "cv", 
                              number = 10, 
                              savePredictions = TRUE, 
                              classProbs = TRUE, 
                              verboseIter = TRUE)

randomForestFit = train(x = input[3:154], 
                        y = as.factor(input$Target), 
                        method = "rf", 
                        trControl = myTrainingControl, 
                        preProcess = c("center","scale"), 
                        ntree = 50)

Les prévisions de sortie que j'obtiens sont les suivantes.

  pred obs    0    1 rowIndex mtry Resample

1    0   1 0.52 0.48       28   12   Fold01
2    0   0 0.58 0.42       43   12   Fold01
3    0   1 0.58 0.42       51   12   Fold01
4    0   0 0.68 0.32       55   12   Fold01
5    0   0 0.62 0.38       59   12   Fold01
6    0   1 0.92 0.08       71   12   Fold01

Maintenant, je veux calculer ROC et AUC sous ROC en utilisant ces données. Comment pourrais-je y parvenir?

11
exAres

Un exemple d'exemple pour AUC:

rf_output=randomForest(x=predictor_data, y=target, importance = TRUE, ntree = 10001, proximity=TRUE, sampsize=sampsizes)

library(ROCR)
predictions=as.vector(rf_output$votes[,2])
pred=prediction(predictions,target)

perf_AUC=performance(pred,"auc") #Calculate the AUC value
[email protected][[1]]

perf_ROC=performance(pred,"tpr","fpr") #plot the actual ROC curve
plot(perf_ROC, main="ROC plot")
text(0.5,0.5,paste("AUC = ",format(AUC, digits=5, scientific=FALSE)))

ou en utilisant pROC et caret

library(caret)
library(pROC)
data(iris)


iris <- iris[iris$Species == "virginica" | iris$Species == "versicolor", ]
iris$Species <- factor(iris$Species)  # setosa should be removed from factor



samples <- sample(NROW(iris), NROW(iris) * .5)
data.train <- iris[samples, ]
data.test <- iris[-samples, ]
forest.model <- train(Species ~., data.train)

result.predicted.prob <- predict(forest.model, data.test, type="prob") # Prediction

result.roc <- roc(data.test$Species, result.predicted.prob$versicolor) # Draw ROC curve.
plot(result.roc, print.thres="best", print.thres.best.method="closest.topleft")

result.coords <- coords(result.roc, "best", best.method="closest.topleft", ret=c("threshold", "accuracy"))
print(result.coords)#to get threshold and accuracy
27
RUser