web-dev-qa-db-fra.com

Extraire des données d'un ggplot

J'ai fait un complot en utilisant ggplot2geom_histogram à partir d'une trame de données. Voir l'exemple ci-dessous et un lien vers l'histogramme ggplot Besoin d'étiqueter chaque geom_vline avec les facteurs en utilisant une fonction ddply imbriquée et un habillage de facette

Je dois maintenant créer un bloc de données contenant les données résumées utilisées pour générer le ggplot ci-dessus.

Sector2 Family  Year    Length
BUN Acroporidae 2010    332.1300496
BUN Poritidae   2011    141.1467966
BUN Acroporidae 2012    127.479
BUN Acroporidae 2013    142.5940556
MUR Faviidae    2010    304.0405
MUR Faviidae    2011    423.152
MUR Pocilloporidae  2012    576.0295
MUR Poritidae   2013    123.8936667
NTH Faviidae    2010    60.494
NTH Faviidae    2011    27.427
NTH Pocilloporidae  2012    270.475
NTH Poritidae   2013    363.4635
41
George

Pour obtenir des valeurs réellement tracées, vous pouvez utiliser la fonction ggplot_build() où l'argument est votre tracé.

p <- ggplot(mtcars,aes(mpg))+geom_histogram()+
      facet_wrap(~cyl)+geom_vline(data=data.frame(x=c(20,30)),aes(xintercept=x))

pg <- ggplot_build(p)

Cela fera la liste et l'une des sous-listes est nommée data. Cette sous-liste contient une trame de données avec des valeurs utilisées dans le tracé, par exemple, pour l'histrogramme, elle contient y valeurs (les mêmes que count). Si vous utilisez des facettes, la colonne PANEL indique dans quelles valeurs de facettes sont utilisées. S'il existe plusieurs geom_ dans votre tracé, les données contiendront des trames de données pour chacune - dans mon exemple, il y a une trame de données pour l'histogramme et une autre pour les lignes virtuelles.

head(pg$data[[1]])
  y count         x ndensity ncount density PANEL group ymin ymax
1 0     0  9.791667        0      0       0     1     1    0    0
2 0     0 10.575000        0      0       0     1     1    0    0
3 0     0 11.358333        0      0       0     1     1    0    0
4 0     0 12.141667        0      0       0     1     1    0    0
5 0     0 12.925000        0      0       0     1     1    0    0
6 0     0 13.708333        0      0       0     1     1    0    0
      xmin     xmax
1  9.40000 10.18333
2 10.18333 10.96667
3 10.96667 11.75000
4 11.75000 12.53333
5 12.53333 13.31667
6 13.31667 14.10000

head(pg$data[[2]])
  xintercept PANEL group xend  x
1         20     1     1   20 20
2         30     1     1   30 30
3         20     2     2   20 20
4         30     2     2   30 30
5         20     3     3   20 20
6         30     3     3   30 30
64
Didzis Elferts

Si vous avez besoin uniquement de données, il semble que layer_data Soit conçu précisément pour cela:

layer_data(p, 1)

Il vous donnera les données de la première couche, comme ggplot_build(p)$data[[1]].

Son code source est en effet précisément function (plot, i = 1L) ggplot_build(plot)$data[[i]]

24
Moody_Mudskipper

Pendant que les autres réponses vous rapprochent, si vous recherchez les données réelles qui ont été transmises à ggplot(), vous pouvez utiliser:

ggplot_build(p)$plot$data

require(tidyverse)

p <- ggplot(mtcars,aes(mpg))+geom_histogram()+
  facet_wrap(~cyl)+geom_vline(data=data.frame(x=c(20,30)),aes(xintercept=x))

pg <- ggplot_build(p)
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

pg$plot$data
#>                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
#> Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
#> Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
#> Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
#> Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
#> Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
#> Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
#> Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
#> Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
#> Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
#> Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
#> Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
#> Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
#> Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
#> Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
#> Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
#> Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
#> Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
#> AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
#> Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
#> Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
#> Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
#> Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
#> Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
#> Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
#> Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
#> Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
#> Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

Créé le 2019-03-04 par le package reprex (v0.2.1)

Bien que cela ne soit pas utile pour une trame de données non modifiée, si vous parcourez une série de mutate() ou summarize() avant d'arriver au ggplot, cela peut être utile après la fait pour montrer les données.

2
jzadra